
Bayesian Analysis of Computer Code Outputs:
A Tutorial

A. O�Hagan
University of She¢ eld, UK

August 11, 2004

Abstract

The Bayesian approach to quantifying, analysing and reducing uncer-
tainty in the application of complex process models is attracting increas-
ing attention amongst users of such models. The range and power of the
Bayesian methods is growing and there is already a sizeable literature on
these methods. However, most of it is in specialist statistical journals.
The purpose of this tutorial is to introduce the more general reader to the
Bayesian approach.

Keywords: Bayesian statistics; calibration; dimensionality reduction;
emulator; Gaussian process; roughness; screening; sensitivity analysis;
smoothness; uncertainty analysis; validation.

1 Introduction

Over the last 5 to 10 years, a range of tools have been developed using Bayesian
statistics to tackle many important problems faced by developers and users of
complex process models. These methods can be seen as developments of work
on Design and Analysis of Computer Experiments in the 1980s, which intro-
duced the fundamental idea of building a statistical emulator of a simulation
model. The Bayesian Analysis of Computer Code Outputs (BACCO) extends
this approach both in terms of emulation of more complex model behaviour
and in terms of methodology to employ emulators to address a wide range of
practical questions in the development and use of process models.

1.1 Simulators

Complex models are built in almost all �elds of science and technology (and
increasingly in social sciences and commerce) to simulate the behaviour of real-
world systems. These models may be empirical or represent detailed scienti�c
understanding of the real-world process. The latter may be called process mod-
els or mechanistic models, but the distinction is somewhat arti�cial because

1



nearly all process models contain equations whose forms or coe¢ cients are em-
pirically determined. These models are usually implemented in computer pro-
grams, which can run to many thousands of lines of code and can take from a
fraction of a second to several hours to run. We will refer to both the mathe-
matical model and the computer program that implements it as a simulator.
We will be concerned in this tutorial with deterministic simulators, i.e. sim-

ulators that produce the same outputs every time if they are given the same
inputs. (The distinction is again rather arti�cial, because even a stochastic
simulator could be made deterministic by making the random number seed an
input.) Such a simulator can be regarded as a mathematical function f(:), that
takes a vector x of inputs and produces an output vector y = f(x).
The outputs y of a simulator are a prediction of the real-world phenomena

that are simulated by the model, but as such will inevitably be imperfect. There
will be uncertainty about how close the true real-world quantities will be to the
outputs y. This uncertainty arises from many sources, particularly uncertainty
in the correct values to give the inputs x and uncertainty about the correctness of
the model f(:) in representing the real-world system; see Kennedy and O�Hagan
(2001) for a more complete taxonomy of the uncertainties involved in using
simulators. The primary objective of the methods outlined in this tutorial is to
quantify, analyse and reduce uncertainty in simulator outputs.

1.2 Bayesian methods

The Bayesian approach to statistics is experiencing a surge in interest and de-
mand in almost every area of application of statistics. There are many reasons
for this, but this tutorial will not address the often complex distinctions between
the Bayesian and the more well-known frequentist approaches. Nevertheless, the
word �Bayesian�appears in the title and it is appropriate to say a few words
about what is Bayesian in the methods described here, and why they are pre-
ferred to frequentist methods for these problems.
Frequentist statistics earns its name through its emphasis on interpreting the

probability of an event as the long-run limiting frequency with which the event
occurs if repeated an in�nite number of times. To most people who are not spe-
cialists in probability or statistics, this is the only interpretation of probability
that they have ever learnt, but it is a severely limiting notion. The frequentist
de�nition of probability can only apply to events that are, at least in principle,
repeatable an inde�nite number of times. The uncertainty in repeatable events,
which arises from their intrinsic randomness and unpredictability, is sometimes
called aleatory uncertainty.
Most of the uncertain quantities that we wish to learn about through sta-

tistical analysis are, in contrast, not repeatable; they are one-o¤ things. To the
user of a model of groundwater �ow, the permeability of some particular block
of soil or rock is unknown but not an instance of something repeatable. It is a
one-o¤, the permeability of that speci�c block. The model user�s uncertainty is
not due to intrinsic randomness, but to his or her lack of knowledge about that
particular block. The uncertainty in non-repeatable events that is due simply

2



to our lack of knowledge of them is called epistemic uncertainty.
Almost all the uncertainties in the analysis of simulator outputs are epis-

temic. In a particular application of the model, the correct values of the model
inputs are one-o¤, speci�c to this application, and so subject to epistemic un-
certainty. Furthermore, no model is perfect, so that even if we have the correct
inputs x the outputs y will di¤er from the true values of the phenomena being
simulated; uncertainty about this model discrepancy is also epistemic.
Bayesian statistics is based on a much broader de�nition of probability.

Within the Bayesian framework we are free to quantify all kinds of uncertainty,
whether aleatory or epistemic, through probabilities.1 All of the techniques de-
scribed in this tutorial are statistical, and all are grounded �rmly in the Bayesian
framework.

1.3 Objectives of this tutorial

Section 2 explains the idea of an emulator as a statistical representation of a
simulator, while Section 3 describes how the Gaussian process (GP) emulator
works and discusses the key steps in building a GP emulator. Emulation is rarely
an end in itself; the purpose of building an emulator is almost always to facilitate
other calculations that would not be practical to do using the simulator itself.
In Section 4, we explain the use of emulation as a computationally e¢ cient
device to address various problems associated with the use of simulators, in
the context of uncertainty analysis. Emulation-based techniques for sensitivity
analysis and calibration are outlined in Section 5. The Bayesian methods are
undergoing quite rapid development to address new challenges posed by complex
simulation models, and some of these extensions and challenges are explained
in Section 6. Section 7 o¤ers a summary of the main points and discussion of
related work.
The primary objective of the tutorial is to convey, with as little technical

statistical detail as possible, the way that the Bayesian methods work and the
key tasks and challenges in their use. The intended audience is developers and
users of models in all �elds of science and technology, rather than statisticians.
The aim is not to teach how to actually employ these methods. To do so would
have entailed an article many times as long as this tutorial. However, references
are given throughout to journal articles, usually in the mainstream statistics
literature, where the interested reader may �nd the necessary technical details.
We will deal almost exclusively with the case when the model produces a

single output y, rather than a vector y. This is for ease of exposition, and we
will only refer brie�y in Section 6 to extra issues that arise in the multi-output
case.

1See O�Hagan and Oakley (2004) for further discussion of how the distinction between
aleatory and epistemic uncertainty is fundamental to that between frequentist and Bayesian
statistics.

3



2 Principles of emulation

2.1 What is an emulator?

A major concern of the SAMO meetings is to understand the sensitivity of
model outputs to variation or uncertainty in their inputs. Sensitivity analysis
(SA) and uncertainty analysis (UA) are powerful general tools for both the
model developer and the model user. Unfortunately, the standard techniques of
UA/SA that are described in Saltelli et al (2000) demand a very large number of
model runs, and when a single model run takes several minutes these methods
become impractical. Even for a model that takes just one second to run, a
comprehensive variance-based sensitivity analysis may require millions of model
runs, and just one million runs will take 11.5 days of continuous CPU time.
A major research strand in SAMO is therefore the search for more e¢ cient
computational tools to perform SA. The main reason for interest in BACCO
is that the Bayesian methods are enormously more e¢ cient than other existing
approaches. This e¢ ciency is achieved through emulation.
An emulator is a statistical approximation of the simulator.
Remembering that the simulator is just a function f(:) that maps inputs

x into an output y = f(x), we could imagine using an approximation f̂(:)
instead of f(:) for the UA/SA calculations. If the approximation is good enough,
then the uncertainty and sensitivity measures produced by the analysis will be
su¢ ciently close to those that would have been obtained using the original
simulator f(:). If the approximation is simpler than the original function, and
more importantly, if f̂(x) can be computed much faster than f(x), then this
o¤ers the solution to the infeasibility of applying SA to a complex simulator. It is
clearly preferable to have an approximate sensitivity analysis than no sensitivity
analysis at all.
However, an emulator is not just an approximation, but a statistical approx-

imation. An approximation to f(x) for any input con�guration x is a single
value f̂(x). An emulator provides an entire probability distribution for f(x).
We can regard the mean of that distribution as the approximation f̂(x), but
the emulator also provides a distribution around that mean which describes how
close it is likely to be to the true f(x). In fact, an emulator is a probability
distribution for the entire function f(:).
Although such a thing may seem incredibly complex, statisticians and prob-

abilists have a very well established theory of stochastic processes with which
to describe uncertainty about functions.

2.2 Building an emulator

In practice an emulator is statistical in two senses. Not only is it a statisti-
cal approximation to the simulator, but it is built using statistical methods.
Given a set of training runs of the model, in which outputs y1 = f(x1); y2 =
f(x2); : : : ; yN = f(xN ) are observed, we treat these as data with which to esti-
mate f(:).

4



Two natural criteria that the emulator should satisfy are as follows.

1. At a design point xi, the emulator should re�ect the fact that we know
the true value of the simulator output, so it should return f̂(xi) = yi with
no uncertainty.

2. At other points, the distribution for f(x) should give a mean value f̂(x)
that represents a plausible interpolation or extrapolation of the training
data, and the probability distribution around this mean should be a re-
alistic expression of uncertainty about how the simulator might interpo-
late/extrapolate.

Criterion 1 is easy to check. The principal way to check criterion 2 is to make
extra runs of the model, and to con�rm that the true simulator outputs do lie
appropriately and consistently within the emulator�s probability distributions
for those outputs.
Some approaches to emulation that may be familiar to some readers include

�tting regression models to the data, or using them to create a neural network.
It is easy to see the sense in which a regression model might be an emulator.
The statistical analysis provides estimates of the regression parameters, and
plugging these estimates into the regression equation provides the approximation
f̂(:). Furthermore, we could construct con�dence intervals around the regression
parameters to describe uncertainty in the �tted approximation. However, it is
also very easy to see that regression models do not satisfy the above criteria.
(For instance, a high order polynomial may satisfy the �rst criterion but would
then fail the second.) It is less obvious that neural networks also fail, but we
�nd in practice that neural network interpolations typically fail criterion 2 by
not allowing for enough uncertainty about how the true simulator will behave.
The form of emulator used in the BACCO approach is the Gaussian process,

which is an analytically very tractable form of stochastic process. A properly
�tted Gaussian process emulator will satisfy the two fundamental criteria.

2.3 Code uncertainty

When we use an emulator to perform SA instead of the simulator, we need to
acknowledge an extra source of uncertainty. The measures of sensitivity that we
obtain will di¤er from the true measures that would have been obtained had we
been able to carry out the SA on the simulator. We are uncertain about how far
those true measures might be from the values we obtained using the emulator.
A key point about the emulator being a statistical approximation is that we
can quantify that uncertainty. Indeed, since the emulator gives a probability
distribution for the true function f(:), this induces a probability distribution for
any SA or other measures that might be derived from f(:).
This additional uncertainty is called code uncertainty, because we are un-

certain about what the true simulation code would produce. It is not really a
new concept in SA, since it is implicit in the Monte Carlo methods that under-
lie the UA/SA techniques in Saltelli et al (2000). Any Monte Carlo estimate

5



has a standard error, that can be reduced by increasing the sample size. The
code uncertainty in emulation operates in the same way. Given a large enough
training sample, we will e¤ectively know f(:) with negligible uncertainty.
Whichever method we use, we wish in practice to take a su¢ ciently large

sample of model runs to achieve acceptable accuracy in SA and other analyses.
The key to the greater e¢ ciency of BACCO methods is that for a given

training sample size N the code uncertainty in SA estimates using an emulator
is much smaller than that obtained from Monte Carlo methods using the same
sample size. Where methods based on Monte Carlo may require hundreds of
thousands of model runs to achieve acceptable accuracy, BACCO methods can
typically achieve the same accuracy with a few hundred runs.

3 Gaussian process emulation

This section describes the principles of Gaussian process (GP) emulation in
non-technical terms. The statistical theory can be found, with full mathematical
details, in Kennedy and O�Hagan (2001) and Oakley and O�Hagan (2002, 2004).

3.1 The GP and how it works � one input

Figure 1 illustrates how the GP emulator approximates a simple function. For
the purposes of this example, in addition to assuming that the model produces
a single output we further suppose that it has a single input. The model is then
a simple function y = f(x). The function in this case is f(x) = x + 3 sin x2 .
This is of course not in any sense a complex function, but we imagine it as
representing the kind of situation where f(:) is indeed a complex function and
may take several seconds or even minutes of computer time to evaluate for a
single input x.
Figure 1(a), (b) and (c) shows a sequence in which the number of training

data points is increased from 2 to 3 to 5. The data points are shown as circles.
In each case the solid line is the mean of the emulator distribution, which plays
the role of the approximation f̂(:). Notice how it always passes through the data
points. With only 2 points, it is simply a straight line through those points.
However, as we increase the number of points it adapts to the shape of the true
function.
The dashed lines are bounds set at plus and minus two standard deviations,

and so are approximately 95% probability bounds. Notice that the uncertainty
is pinched in to zero at the data points. With only 2 points, there is still
considerable uncertainty about where the true function f(:) lies, apart from at
the two data points. As the number of points increases, not only does the mean
function adapt to the shape of the true f(:), but uncertainty decreases. With 5
points there is negligible uncertainty about how the true function interpolates
the training data points, but notice that uncertainty rapidly increases if we try
to extrapolate outside the data.

6



(a) (b)

(c) (d)

Figure 1. Examples of GP emulation.

Formally, a Gaussian process is an extension of the familiar normal, or
Gaussian, distribution. The multivariate normal distribution is a distribution
for several variables, each of which marginally has a normal distribution. The
GP is a distribution for a function, where each point f(x) has a normal distribu-
tion. The normal distribution is the most widely used distribution in Statistics,
partly because it is mathematically very easy to work with. Those same nice
mathematical properties carry over to the GP, and contribute further to the
e¢ ciency of the BACCO approach; see Section 4.

3.2 Smoothness

A fundamental assumption in the kind of GPs that have been used in BACCO
is that the model f(:) is a smooth, continuous function of its inputs. It is
true that many complex computer codes do not meet this condition, either
because the underlying real world phenomenon experiences rapid phase changes,
or because switches between alternative equations have been coded into the

7



model. The latter is common in environmental models and others built on
empirical relationships. We return to the assumption of continuity in Section 6.
This basic assumption of a (homogeneously) smooth, continuous function

gives the GP major computational advantages over Monte Carlo methods. The
implication of smoothness can be seen in Figure 1. Given that we know the
function value at x = 1, smoothness implies that f(x) must be close to that
same value for any x su¢ ciently close to 1. This is why the uncertainty about
f(x) is less when x is close to a design point than when it is far from any
design point. It is also linked with the fact that the uncertainty decreases as
the number of design points increases, simply because the maximum distance
from any point decreases.
Each point in the training data provides substantial information about the

function f(:) for inputs close to that design point. It is this extra informa-
tion, that is not used in Monte Carlo methods, which accounts for the greater
e¢ ciency of BACCO methods.
The GP incorporates a parameter that speci�es the degree of smoothness,

in terms of how far a point needs to go from a design point before the uncer-
tainty becomes appreciable. In Figure 1 (a), (b) and (c) this parameter has
the same value, whereas in Figure 1 (d) it has a di¤erent value implying much
less smoothness. Comparing with Figure 1 (b), in which the same 3 design
points are used, we see that the uncertainty bounds are now much wider. The
interpolation is also a little less smooth, although this is scarcely noticeable in
practice.
The actual degree of smoothness concerns how rapidly the function �wig-

gles�. A rough function responds strongly to quite small changes in inputs, and
we need many more data points to emulate accurately a rough function over a
given range. Again this is clear in the comparison between Figure 1 (b) and (d).
So the e¢ ciency of BACCO methods increases with the degree of smoothness.
In practice, BACCO methods estimate the smoothness parameter from the

training data. This is obviously a key GP parameter to estimate, and we need
robust estimation methods. The chosen value can be validated by predicting new
data points. That is, having �tted the GP, and in particular having estimated
the smoothing parameter, we run the model at some new input points x01; x

0
2; : : : ;

and compare the resulting outputs y01; y
0
2; : : : with the probability distributions

predicted by the emulator for those values. If the smoothness parameter in the
GP is too high, the emulator will make predictions with understated uncertainty,
and the new output values will be further from the emulator approximations
than the emulator expects. Conversely, a too low smoothness parameter makes
predictions with overstated uncertainty.

3.3 Higher dimensions

The same general behaviour applies with more than one input, although it is
now harder to show it visually as in Figure 1. With two or more inputs, we are
�tting a surface through the data. At the actual data points, the �tted emulator
passes exactly through the data values, and there is zero uncertainty. As we

8



move the input vector x away these points, the uncertainty increases. Adding
more data points causes the �tted function to adapt itself to the shape of the
true function, and uncertainty decreases. It is clear how, with enough training
data, the uncertainty can be reduced to negligible levels over the range of input
values covered by the data.
The GP now includes smoothness parameters to describe how rapidly the

output responds to changes in each input. It requires one parameter for each
input dimension, at least. Again, accurate and robust estimation of the values
of these parameters is crucial to constructing an e¤ective emulator.
An important question for the user of almost any computational tool is how

much the computational burden increases with dimensionality. In order to em-
ulate a model with many inputs, how many training data points are required?
In many dimensions there is much more �space�between data points, suggesting
that the number of training runs required would escalate rapidly with the num-
ber of inputs. However, an important compensating factor is that in practice,
models never respond strongly to all of their inputs. Pragmatically, we get a
high level of smoothness in all but a few dimensions.
By estimating the smoothness parameters, the GP automatically identi�es

the inputs to which the output is insensitive. E¤ectively, it projects points down
through those smooth dimensions into the lower dimensional space of inputs that
matter. It is certainly true that 200 points in 25 dimensions covers the space
very sparsely, but in 5 dimensions 200 points can �ll the space quite densely
enough to get good emulation. If only 5 of the 25 inputs in�uence the output
appreciably, then the GP automatically reduces the dimensionality.
Another dimensionality question is the number of model outputs. A model

with many outputs e¤ectively has many functions of the inputs, and in prin-
ciple we can emulate each output separately. However, it can be important
to recognise correlations between the outputs, and this is an area of ongoing
research.

3.4 GP with regression

We can improve the emulator by using it in combination with regression. Ef-
fectively, we �t a regression model and then use a GP to smoothly interpolate
the residuals. Using a good regression model means that much of the variation
of the model output in response to its inputs is explained by the regression
function. The GP is then called on to represent only the variation that is not
explained by the regression, and this typically allows the �tted GP to have
increased smoothness, so that fewer training runs are required.
Practical experience suggests that �good�means �parsimonious�; there should

not be more complexity in the regression model than is needed. In statistical
language, the regression model would not over�t the data. The analyses shown
in Figure 1 were all done using a GP in combination with a simple linear re-
gression. It may be that a quadratic regression would have improved the �t,
and so might have led to narrower error bounds on this particular function. In
practice, however, we �nd that curvature in responses to inputs rarely �ts a

9



simple quadratic form well enough to justify the extra complexity of including
such terms in the regression.
Combining the GP with a good regression �t is even more useful for models

with many inputs than in one dimension.
It is interesting to note that regression coe¢ cients (usually from simple lin-

ear regression �ts) are widely interpreted as measures of the sensitivity of the
output to the corresponding parameters. It has also been suggested that in GP
emulation the smoothness parameters indicate sensitivity (in the sense that the
inverse of a smoothness parameter can be seen as a measure of sensitivity). The
truth is that neither smoothness parameters nor regression parameters alone
are adequate representations of sensitivity. The way that the output responds
to each input, as represented in the emulator, involves both the regression and
GP parts.

3.5 Design

We need to choose input con�gurations x1;x2; : : : ;xN at which to run the model
to get training data. These do not need to be random. The objective is to learn
about the function f(:), and well spaced points that cover the region of interest
are much better than random points.
In principle, we can even choose an optimal set of points, subject to any suit-

able criterion, but this is itself computationally demanding for large N and/or
a high dimensional input space. In practice, simple patterned allocations are
very e¤ective, and some randomisation is frequently used. For example, one
simple method is to generate, say, 100 random Latin Hypercube samples and
choose the one having largest minimum distance between points. There are no
doubt many better algorithms, but it is not clear whether they would yield much
improvement in the emulator�s accuracy. See for instance the range of designs
developed in Santner et al (2003).

4 Use of emulators � Uncertainty Analysis

The Bayesian approach is a two-stage approach. First, we build the emulator,
then we use the emulator to compute any desired analyses. Only one set of runs
of the simulator is used, to build the emulator. After the emulator is built, we
do not need any more simulator runs, no matter how many analyses are required
of the simulator�s behaviour.
This contrasts with the conventional methods of sensitivity analysis de-

scribed in Saltelli et al (2000). The Monte Carlo-based methods described
there require a fresh set of simulator runs for each analysis. For instance, to
compute measures of sensitivity for the various inputs or subsets of inputs will
typically require fresh runs of the simulator for each input or set of inputs.
The simplest way to use the emulator is to treat the emulator�s mean function

f̂(:) as if it were the simulator f(:), and just to apply the conventional methods
to f̂(:). Although these methods still demand a fresh set of runs for each SA

10



measure, these are �runs� of the emulator, not the simulator. As such, the
computations are typically enormously faster.
This approach ignores the statistical nature of the emulator, though, and fails

to quantify the potential error due to code uncertainty, whereas an important
feature of the BACCO philosophy is to account for all sources of uncertainty.

4.1 Uncertainty analysis

To show how the BACCOmethods work, it is useful to consider �rst the simplest
kind of analysis. Uncertainty analysis (UA) seeks to quantify the uncertainty in
model outputs induced by uncertainty in inputs. Thus, if the input vector x is
uncertain, we can consider it as a random vector. In statistics, we denote this
by writing it as X. The output is of course now also a random variable, and we
write Y = f(X) to show how the random output Y is related to the random
input X through the model f(:). Given a probability distribution for X, that
we denote by G, the task of UA is to characterise the probability distribution
of Y .
For instance, we may wish to �nd the expected value M = E(Y ) or the

variance V = var(Y ). We will concentrate on the evaluation of M , and will
illustrate the various approaches using the same very simple model f(x) =
x+3 sin x2 that was the basis of Figure 1. We will suppose that the uncertainty
in the single input X is described by a normal distribution with mean 3.5 and
standard deviation 1.2. Formally, we writeX s N(3:5; 1:44), where the variance
1.44 is the square of the standard deviation.

4.2 Monte Carlo UA

The simple Monte Carlo (MC) way to perform UA is to sample values of X from
the distribution G, and to run the simulator. Thus, if the sampled input con-
�gurations are x1;x2; : : : ;xn, the outputs are y1 = f(x1); y2 = f(x2); : : : ; yn =
f(xn). The sample mean �y of the outputs is then an estimate ofM and the sam-
ple variance is an estimate of V . The sample variance divided by n represents
uncertainty (due to code uncertainty) about M .

11



(a) (b)

Figure 2. Histograms of model outputs

Using the illustrative model, Figure 2(a) shows a histogram of MC outputs
yi obtained from 1000 runs of the simulator with inputs generated by 1000 draws
from the N(3:5; 1:44) distribution of X. The sample mean is 5.959, which is
therefore the MC estimate ofM . The sample variance is 1.295, and the standard
error of the MC estimate of M is therefore

p
1:295=1000 = 0:036. We therefore

have a 95% con�dence interval for M of 5:959 � 1:96 � 0:036 = (5:888; 6:030).
If the sample size were increased, the con�dence interval and estimate would
converge to the true value of M , which is 5.966.

4.3 MC applied to the emulator mean

The simplest use of the emulator to do UA is to sample the inputs as before
but to evaluate the emulator mean instead of the simulator, obtaining ŷ1 =
f̂(x1); ŷ2 = f̂(x2); : : : ; ŷn = f̂(xn). Then for instance the sample mean b�y of
these values estimatesM . Figure 2(b) shows the histogram of ŷi values obtained
using the emulator mean from 3 simulator runs shown in Figure 1(b), and using
the same 1000 draws from the N(3:5; 1:44) distribution of X. The sample mean
this time is 5.939, and a 95% interval is (5:867; 6:011). The two histograms di¤er
appreciably. In particular, because f̂(:) increases for 5 < x < 7 (see Figure 1(b)),
the histogram in Figure 2(b) has values of ŷi greater than 7, whereas the true
function decreases over this range. The estimate and con�dence interval for M
are very similar to those obtained by MC, but with increasing sample size they
would not converge on the true value of M . Instead they would converge on
what would be the true value of M if f̂(:) were the true function. This value is
M̂ = 5:958. The di¤erence is small, and it would require a MC sample of size
100,000 before the con�dence interval failed to include the true valueM = 5:966.
If the simulator is su¢ ciently complex, even 1000 runs would not be feasible

and the simple MC approach would be impractical. More e¢ cient strati�ed
MC would still be able to estimate M to reasonable accuracy with perhaps a

12



few tens of runs, but the accuracy we have found by just using the emulator
mean is based on only 3 simulator runs. The emulator itself is so simple that
100,000 or more MC runs are entirely feasible. However, another important
feature of the GP emulator is that we do not need to use MC to evaluate M̂ .
The emulator mean f̂(:) is such a simple mathematical function that we can
derive the mean M̂ with respect to any normal input distribution analytically.
So the value M̂ = 5:958 is obtainable almost instantaneously.
It is thus trivial to compute the value of M̂ based on alternative training

samples. A training sample of 13 simulator runs at x = 0:5; 1; 1:5; : : : ; 6:5 pro-
duces M̂ within 0.0004 of the true M , accuracy that would require a sample of
about 10 million simulator runs using simple MC.

4.4 Code uncertainty

The more correct SACCO analysis recognises uncertainty about how close the
emulator is to the true simulator, i.e. code uncertainty. Figure 1(b) shows the
mean function f̂(:), but it also shows uncertainty bounds around it. Figure 3(a)
shows three possible functions that pass through the three training data points.
These are random functions drawn from the emulator distribution. Of course
we would expect each of these functions to give a slightly di¤erent value of the
output mean M , and Figure 3(b) is a histogram of the values of M from 1000
such randomly sampled functions.

(a) (b)

Figure 3. Uncertainty analysis

In fact, we do not need to generate these random distributions, since again
the nice properties of the GP mean that we can derive the distribution exactly.
It is a normal distribution with mean equal to M̂ = 5:958 and standard deviation
0.051. This standard deviation makes it clear that the estimate is somewhat
fortuitously close to the true M . We can now compare its accuracy rather more
fairly with that of Monte Carlo. The MC method, using a sample of just 3

13



simulator runs, would have a standard error of
p
1:295=3 = 0:657, whereas the

BACCO estimate, also using just 3 simulator runs, has a standard deviation of
0.051. To achieve the same standard error using MC would require about 500
simulator runs.

4.5 Summary

This section has illustrated the basic features of the BACCO method using a
very simple example, but the same ideas carry over to much more complex
functions with many inputs. Considering only the simple output mean M , MC
generates an estimate (the MC sample mean) and a standard error (the square
root of the MC sample variance divided by the sample size). The BACCO
approach is analogous in that it produces an estimate M̂ (the value of M for
the emulator mean function) and a standard deviation (quantifying how the
value of M would vary over random functions drawn from the emulator). Both
the standard error of the MC approach and the BACCO standard deviation
represent code uncertainty, and can be reduced to any desired level by making
enough simulator runs. In the case of MC, these are the sample runs, and it will
typically take thousands (or even tens or hundreds of thousands) of simulator
runs to achieve acceptable accuracy. In the case of BACCO, the simulator runs
are used to build the emulator, and to achieve acceptable accuracy can require
only a handful of runs in a model with just one or two inputs, or up to a few
hundred with a complex function of many inputs.
The BACCO estimate and standard deviation can be computed using a

�brute force�approach of generating many random functions and applying Monte
Carlo to each of these functions. Although this means potentially a huge num-
ber of �runs�these are runs of the emulator, and even this brute force approach
can be entirely feasible because the emulator �runs�essentially instantaneously.
However, the good mathematical properties of the emulator make it possible
to avoid this and to evaluate the mean and standard deviation exactly without
sampling. The theory for this and for similar computation for the UA variance
V , are presented in Haylock and O�Hagan (1996) and O�Hagan and Haylock
(1997). They present other examples, based on real simulators, that demon-
strate the substantial computational advantages of the emulator-based BACCO
method, compared with MC. Theory for the whole UA uncertainty distribution
is given by Oakley and O�Hagan (2002) and for percentiles of that distribution
by Oakley (2004).
The same properties apply to the other kinds of analysis considered in the

next section. Brute force computation is practical in BACCO because we only
run the simulator itself a relatively small number of times, but theoretical results
typically allow the analysis to be done without sampling.

14



5 Use of emulators � other analyses

5.1 Sensitivity analysis

The BACCO approach has been applied very successfully to sensitivity analysis
(SA), and there is now considerable experience in applying both UA and SA
to complex models. The SA theory is set out in Oakley and O�Hagan (2004),
giving results not only for variance-based SA measures but also for regression
measures and plots of main e¤ects and interactions. The fact that all these SA
computations can be produced from a single set of training runs of the simulator
is a major advantage of the BACCO approach.
Oakley and O�Hagan (2004) present a synthetic example with 15 inputs. Us-

ing only 250 simulator runs to build the emulator, they obtain a comprehensive
set of SA analyses. To compute just the variance-based sensitivity indices and
total sensitivity indices to the same accuracy using the FAST Monte Carlo tech-
nique for all 15 inputs would have required 15,360 simulator runs. The BACCO
analysis produces not only all of these but also any desired sensitivity indices
for combinations of two or more inputs with no extra simulator runs. It also
gives plots such as Figure 4, which shows the main e¤ect of varying each input,
averaged over the uncertainty in all the other inputs.

Figure 4. Main e¤ects of 15 model inputs, from Oakley and O�Hagan (2004).

15



Nonlinearity of e¤ects is clearly seen in Figure 4, in a way that is not revealed
by variance-based measures. Oakley and O�Hagan (2004) show how nonlinearity
can be quanti�ed in terms of the di¤erence between the variance-based sensitiv-
ity index and a regression-based index. Oakley (2002) shows how variance-based
measures �t within a broader notion of value of information based sensitivity
measures, and presents an application in which the BACCO approach achieves
a 1000-fold increase in e¢ ciency over MC methods.
It is also worth noting that it is trivial to perform �what if�analyses in which

we vary the uncertainty distribution G for the model inputs. These can be done
using the emulator, and in contrast to FAST would require no new simulator
runs.
Software for building the emulator and performing UA/SA is currently in

beta testing and will be available for general use soon.

5.2 Bayesian calibration

A whole range of new questions arise for the model user when simulator output
can be combined with observations of the real-world process that the simula-
tor is designed to represent. In particular, calibration is the process of using
observational data to learn about uncertain model inputs. Conventional cal-
ibration is usually done without explicit quanti�cation of uncertainty in the
inputs. Instead, the inputs to be calibrated are varied until the model output
�ts the observational data as closely as possible (according to some criterion),
with other inputs held �xed. The best �tting values of the calibrated inputs are
then treated as the true values.
Theory in Kennedy and O�Hagan (2001) presents a Bayesian approach to

calibration in which uncertainty in inputs is explicit. Calibration then reduces,
but does not eliminate, the uncertainty in the calibrated inputs. Emulation
again plays an important part when the simulator is complex, but the introduc-
tion of observational data makes it necessary to model the relationship between
the simulator and reality. This is done via a model discrepancy function (which
becomes a second GP in the analysis), and another product of the Bayesian cal-
ibration process is to learn about model discrepancy. As a result, the estimate
of the model discrepancy function allows the user to �correct�the simulator and
to reduce uncertainty about how well it represents reality. (More importantly in
practice, and of greater long term value, this estimate of model discrepancy can
be used by the model developer to inform further model improvements.) This
approach has substantial potential, but experience to date is based on only a
few substantial applications, such as those described in Kennedy and O�Hagan
(2001) and Kennedy, O�Hagan and Higgins (2002).
Other uses of observational data include data assimilation and model vali-

dation, which are discussed in the next section.

16



6 Extensions and challenges

Work is ongoing or planned on a number of extensions to the basic BACCO
methodology, to address a range of challenges posed by practical applications.

� Dimension reduction has been described as happening automatically through
estimation of smoothness parameters. Thus, inputs having little in�uence
on the output have high estimated smoothness, and the emulator concen-
trates on the dimensions with more in�uence. But this is only automatic
if we have the right coordinate system. For instance, if the model is
e¤ectively a function of the sum of 15 inputs it will then appear to re-
spond equally strongly to all of them, and no projection-based dimension
reduction occurs. We need to rotate coordinates, and �nding the right
coordinate system is a challenge. Some progress has been made on identi-
fying additivity and near additivity of model components, which may lead
to ways of identifying this kind of structure.

� Computation. Building and using the emulator requires inversion of a vari-
ance matrix whose dimension is the number of simulator runs. This can
lead to numerical problems. Gaussian processes with less smooth covari-
ance structures than the default gaussian form used in BACCO methods
are numerically more stable but may produce less accurate emulation.

� Smoothness estimation is fundamental to good emulation, and work is
continuing on combining a variety of estimation methods to produce a
robust and well validated choice. Allowing for uncertainty in smoothness
parameters is also possible (see Bayarri et al, 2002) but increases the
computational complexity.

� Multiple outputs can be dealt with by building separate emulators for
each output, but this may lose information about how the outputs are
correlated. This is proving to be important for some ongoing work on
aggregating model outputs spatially.

� Model inadequacy. The model inadequacy function is important wherever
we wish to link model outputs to observational data. There is usually very
little information about the nature of this term, yet it is a very important
component of uncertainty for model users. Ongoing work of Jonathan
Rougier at the University of Durham is investigating realistic ways to
model this function.

� Dynamic models. Most environmental models are dynamic, in the sense
that they describe evolving behaviour of a system. The model itself is
iterative. At each time step it takes the current state vector as part of
its input vector, together with driving data and other parameters, and
it outputs the updated state vector. Work is ongoing to emulate such
models on a single time step, in order to handle the high dimensionality
of driving data, to be able to make predictions over arbitrary time steps,
and to address data assimilation.

17



� Data assimilation is a term used in dynamic models to describe learning
about the current value of the state vector. It is a form of calibration, but
usually done over a series of time steps. Simple methods to do this in real
time are under investigation.

� Discontinuities. The basic GP emulator assumes that the simulator re-
sponds smoothly to its inputs. This is often not the case in practice.
Computer models may have switches that cause the response to be discon-
tinuous, or to have sharp changes of gradient. The emulator will smooth
these out, leading to locally poor representation of the simulator. This
may of course imply better representation of reality if reality behave more
smoothly! Ideas are under investigation to emulate functions with dis-
continuities or sharp changes of direction, particularly where these are
intentionally there to model unstable real behaviour.

� Validation is a term that is widely used in computer modelling, but often
means little more than �we compared the model output with real obser-
vations and look, they �t quite well�. A BACCO concept of validation is
that we can predict reality, using model output with correction of model
discrepancy where possible, in a statistically well validated way. That
is, we can estimate real behaviour with uncertainty around the estimate
(accounting for all sources of uncertainty), such that comparison with ob-
servational data suggests the expressed uncertainty is neither too large
nor too small.

� Software. The �nal challenge is to create BACCO software that makes
the methods readily applicable by non-specialist statisticians. The theory
is complex, and demands a high level of mathematical and statistical so-
phistication to apply at present. As we gain more experience in the use
of these methods it should become possible to transfer the technology to
a wider variety of users through software. We have currently reached this
point for applying UA/SA methods to reasonably well behaved models
with modest numbers of inputs, and software will be released soon.

7 Discussion

The Bayesian method o¤ers a powerful and e¢ cient way of addressing a range
of questions that are relevant to the developer or user of complex process mod-
els. By a two-step approach in which �rst an emulator is built as a statistical
representation of the simulator and then this emulator is used to derive rele-
vant analyses, the BACCO approach encompasses all kinds of techniques in one
coherent framework.
The technology is already well established for uncertainty and sensitivity

analyses, with software to be released soon. Theory is also in place for calibra-
tion and other techniques, but more practical experience is needed before these
techniques are available for general use and coded in software.

18



For details of ongoing work and preprints of papers, see my website<http://www.shef.ac.uk/~st1ao>.
Information about Marc Kennedy�s GEM-SA software will appear on this web-
site in due course.
This tutorial has concentrated on recent and ongoing work by myself and

colleagues at the University of She¢ eld. However, it would be seriously incom-
plete without placing it in the context of related past and present research by
other groups. BACCO methods arise from the strong tradition of DACE (De-
sign and Analysis of Computer Experiments), which dates back to the 1980s.
An important review article on DACE research is Sacks et al (1989), and some
more recent papers are Morris et al (1993) and Bates et al (1995). Although
much DACE work is philosophically non-Bayesian, there is a clear recognition
of the Bayesian interpretation and some work that is explicitly Bayesian (see
in particular Currin et al, 1991). Much of the e¤ort has been directed at em-
ulation for the purpose primarily of predicting simulator output, for instance
to optimise a process. Again, however, there are overlaps with BACCO work
in applications to SA; see Welch et al (1992). Ongoing work in the Research
Triangle, North Carolina, by Jerry Sacks, Jim Berger and others has bene�ted
both from Jerry�s long involvement with DACE, the strong Bayesian perspec-
tive of Jim Berger and the BACCO skills of Marc Kennedy; see Bayarri et al
(2002). Further development in this area is continuing at Ohio State University
by a group including Bill Notz and Thomas Santner. Santner et al (2003) is a
�ne text on Gaussian process emulation.
The BACCO methods are being actively explored at Los Alamos by David

Higdon and others, as shown in the paper by Kathy Campbell in this volume.
Another strong group, based at the University of Durham, including Michael

Goldstein, Peter Craig and Jonathan Rougier, has produced a substantial body
of innovative BACCO research. The only reason that their work has not been
covered more prominently in this tutorial is that their approach has emphasised
Bayes linear methods rather than fully Bayesian analysis, and has sometimes
taken a one-step view that involves emulation only implicitly. See Craig et al
(1997, 2001), Goldstein and Rougier (2003, 2004).

References

Bayarri, M., Berger, J., Higdon, D., Kennedy, M., Kottas, A., Paulo, R., Sacks,
J., Cafeo, J., Cavendish, J., Lin, C. and Tu, J. (2002). A framework for val-
idation of computer models. In Proceedings of the Workshop on Foundations
for Veri�cation and Validation in the 21st Century, Pace, D. and Stevenson, S.
(eds.). Society for Modeling and Simulation International.
Bates, R. A., Buck, R. J., Riccomagno, E. and Wynn, H. P. (1995) Experi-

mental design and observation for large systems. Journal of the Royal Statistical
Society B 58, 77�94.
Craig, P. S., Goldstein, M., Rougier, J. C. and Seheult, A. H. (2001).

Bayesian forecasting for complex systems using computer simulators. Journal
of the American Statistical Association 96, 717�729.

19



Craig, P. S., Goldstein, M., Seheult, A. H. and Smith, J. A. (1997). Pres-
sure matching for hydrocarbon reservoirs: a case study in the use of Bayes linear
strategies for large computer experiments. In Case Studies in Bayesian Statis-
tics: Volume III, Gatsonis, C., Hodges, J. S., Kass, R. E., McCulloch, R., Rossi,
P. and Singpurwalla, N. D. (eds.), 36�93. New York: Springer-Verlag.
Currin, C., Mitchell, T. J., Morris, M. and Ylvisaker, D. (1991). Bayesian

prediction of deterministic functions with applications to the design and analysis
of computer experiments. Journal of the American Statistical Association 86,
953�963.
Goldstein, M. and Rougier, J. C. (2003). Calibrated Bayesian forecasting us-

ing large computer simulators. Available for download from http://www.maths.dur.ac.uk/stats/physpred/papers/CalibratedBayesian.ps.
Goldstein, M. and Rougier, J. C. (2004). Probabilistic formulations for trans-

ferring inferences from mathematical models to physical systems. Available for
download from http://www.maths.dur.ac.uk/stats/physpred/papers/directSim.ps.
Haylock, R. G. and O�Hagan, A. (1996). On inference for outputs of com-

putationally expensive algorithms with uncertainty on the inputs. In Bayesian
Statistics 5, J. M. Bernardo et al (eds.). Oxford University Press, 629�637.
Kennedy, M. C. and O�Hagan, A. (2001). Bayesian calibration of computer

models (with dis8cussion). Journal of the Royal Statistical Society B 63, 425�
464.
Kennedy, M. C., O�Hagan, A. and Higgins, N. (2002). Bayesian analysis of

computer code outputs. In Quantitative Methods for Current Environmental
Issues. C. W. Anderson, V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi
(eds.), 227�243. Springer-Verlag: London.
Morris, M. D., Mitchell, T. J. and Ylvisaker, D. (1993) Bayesian design

and analysis of computer experiments: use of derivatives in surface prediction.
Technometrics 35, 243�255.
Oakley, J. (2002). Value of information for complex cost-e¤ectiveness mod-

els. Research Report No. 533/02 Department of Probability and Statistics,
University of She¢ eld.
Oakley, J. (2004). Estimating percentiles of computer code outputs. Applied

Statistics 53, 83�93.
Oakley, J. and O�Hagan, A. (2002). Bayesian inference for the uncertainty

distribution of computer model outputs. Biometrika 89, 769�784.
Oakley, J. and O�Hagan, A. (2004). Probabilistic sensitivity analysis of

complex models: a8 Bayesian approach. Journal of the Royal Statistical Society
B 66, 751�769.
O�Hagan, A. and Haylock, R. G. (1997). Bayesian uncertainty analysis and

radiological protection. In Statistics for the Environment 3, Pollution Assess-
ment and Control, 109�128. V. Barnett and K. F. Turkman (eds.). Wiley:
Chichester.
O�Hagan, A. and Oakley, J. E. (2004). Probability is perfect, but we can�t

elicit it perfectly. Reliability Engineering and System Safety (in press).
Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and

analysis of computer experiments. Statistical Science 4, 409�435.

20



Saltelli, A., Chan, K. and Scott, E. M. (2000) (eds.) Sensitivity Analysis.
New York: Wiley.
Santner, T. J., Williams, B. and Notz, W. (2003). The Design and Analysis

of Computer Experiments. New York: Springer-Verlag.
Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J. and Morris,

M. D. (1992). Screening, predicting, and computer experiments. Technometrics
34, 15�25.

21


