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The Impact of Satellite-Derived Land Cover
Uncertainty on Carbon Cycle Calculations

Keith Harris, Anthony O’Hagan and Shaun Quegan,Member, IEEE

Abstract—A methodology is proposed for consistently in-
cluding uncertainty in land cover, as described by confusion
matrices, with other sources of input uncertainty in quantifying
the uncertainty in model-based estimates of carbon fluxes. The
approach is illustrated by calculating for each model grid-cell
the Bayesian estimate of net biospheric carbon flux, its overall
uncertainty and the proportion of uncertainty due to land cover
for England and Wales in 2000. The methodology is generally
applicable to other models of land surface fluxes, such as those of
energy and water, and to other types of environmental calculation
where land cover is an input.

Index Terms—Carbon cycle, Bayesian statistics, uncertainty,
vegetation models, emulator, kriging.

I. I NTRODUCTION

T HE land surface plays a central role in the Earth’s
carbon cycle. Globally, anthropogenic carbon dioxide

(CO2) emissions due to fossil fuel burning, cement production
and land use change (mainly from tropical deforestation)
averaged around 8.0 GtC y−1 during the 1990s, but with
large uncertainties, particularly in the land use change term
[1]. (Throughout this paper, CO2 fluxes will be expressed in
carbon units, in accordance with IPCC [1]; 1 GtC =109 tonnes
of carbon, equivalent to 11/3 Gt of CO2.) However, only 3.2
GtC y−1 stayed in the atmosphere, the rest being taken up
the ocean (2.2 GtC y−1) and the land (2.6 GtC y−1). The
latter term, referred to as the residual terrestrial sink, suffers
from large uncertainties in its magnitude, how it is distributed
spatially and the biophysical processes which determine it.
However, what is clear is that it represents a net imbalance
between uptake of carbon by growth processes and emissions
of carbon due to respiration from soils and vegetation.

Inferences on the location of terrestrial CO2 sources and
sinks can be made by combining ground-based measurements
of CO2 with atmospheric transport models [2], but sparsity
of data means that this gives only coarse spatial resolution
(thousands of km); it also gives no direct insight into the
biophysical processes causing the fluxes. As a result, much
of our understanding of terrestrial carbon fluxes and their
geographical distribution comes from the use of a class of
biophysical models known as Dynamic Vegetation Models
(DVMs). These models calculate carbon fluxes between the
atmosphere, vegetation and soil by mathematically represent-
ing the processes of photosynthesis, hydrology, gas and energy
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exchanges with the atmosphere, vegetation dynamics at vari-
ous time-scales (phenology, growth, death and replacement),
disturbance, nutrient cycling and soil respiration [3]. Such
DVMs also form core components of coupled climate models,
so that quantifying their uncertainties is crucial in estimating
the reliability of climate predictions.

DVMs require various types of input data to carry out their
calculations. The major dynamic control is climate, and the
model grid-cell size is therefore that of the climate data (typ-
ically from 1/6 to 1 degree). Other important external inputs
are the atmospheric CO2 concentration (possibly varying for
multi-year calculations), soil properties and solar illumination
(both of which are determined by geographical location).
Given these inputs, carbon fluxes at each grid-cell depend
on the properties of the land cover within the cell, which
have very strong effects on all aspects of model behaviour [4].
Typically, land cover is represented in terms of proportional
occupancy by a small number of Plant Functional Types
(PFTs), such as evergreen needleleaf trees, C3 grasses, crops,
etc., with each PFT having its own set of parameters that
control its response to the environment.

One approach to fixing the proportion of each PFT within
a grid-cell is to use a set of biophysical rules to determine the
likelihood of a given PFT existing at that location. However,
this is only appropriate for ‘natural’ vegetation, whereasmuch
of the land surface is heavily affected by human activities.
Hence most DVMs exploit information on land cover derived
from satellite data, of which there are numerous available
sources ([5]–[7]; see also references in [4]). Using such a priori
land cover data gives rise to uncertainty from three sources:

• the choice of land cover map: there are large differences
between different land cover products [4], [8];

• the mapping from land cover types to PFTs [4];
• the uncertainty in each individual land cover map, which

typically is poorly known; even in the best cases, it is
described simply by a confusion matrix derived from a
training set.

This paper focuses on the third type of uncertainty and
shows how it can be included in the uncertainty analysis of
carbon fluxes calculated by a DVM on an equal footing with
the other ‘static’ data inputs, i.e. soil descriptors and PFT
parameters. We then demonstrate its use by producing maps
of net biospheric carbon flux (often called the Net Biome
Production or NBP) and NBP uncertainty for England and
Wales (E&W) using the Sheffield Dynamic Global Vegetation
Model, SDGVM [9]. It will be shown that, in this case, land
cover uncertainty is not a major contributor to the uncertainty
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in the estimates of NBP. However, the key purpose of this
paper is to provide a methodology by which land cover un-
certainty, expressed by a confusion matrix, can beconsistently
embedded in analysis of overall model output uncertainty on
an equal footing with other input data types. It is equally
applicable to other DVMs and models of land surface water
and energy fluxes. Moreover, the method is many orders of
magnitude less computer intensive than, for example, Monte
Carlo approaches. It therefore provides a practical approach to
using the information in confusion matrices, which are often
available but rarely exploited, in the uncertainty analysis of a
wide range of land surface process calculations.

II. DATA

Descriptions of the soil data and PFT parameters, including
the uncertainties in these inputs, are given in [10]. Land cover
is provided by the Land Cover Map 2000 (LCM2000) [11]
and its uncertainty is derived from the Countryside Survey
2000 (CS2000) [12]. LCM2000 has a base spatial resolution of
25m×25m with each pixel containing one of 26 subclasses of
vegetation types classified from spectral information collected
from various orbital sensors. To convert LCM2000 into a
format compatible with the SDGVM, these 26 vegetation
types are first grouped into the 5 PFTs used by the SDGVM,
namely deciduous broadleaf (DcBl) trees, evergreen needleleaf
(EvNl) trees, grassland, crops and a non-productive PFT called
Bare to account for urban and barren areas that take no
part in the natural carbon cycle (for the rules to convert
LCM2000 vegetation types to PFTs see [4] or [13]). LCM2000
is then upscaled from its25m×25m resolution to1/6thdegree
resolution in order to match the grid of the climate database
used by the SDGVM. The transformed LCM2000 map used
in our analysis thus takes the form of 707 sites of1/6th

degree resolution across England and Wales with each site
characterised by the proportion of land covered by each of
the 5 PFTs. As mentioned earlier, the SDGVM also requires
additional inputs in the form of monthly climate data. These
were taken from [14] and are treated as known, since the
uncertainty in their values is believed to be small.

III. M ETHODOLOGY

A. Uncertainty analysis and components of uncertainty

Our analysis of uncertainty in the carbon flux for E&W
in 2000 is based on NBP values output from SDGVM. The
uncertainty in the flux arises from a number of sources:

1) Uncertainty due to model inputs.In common with other
DVMs, uncertain inputs to SDGVM include soil data
(bulk density and proportions of sand and clay), PFT
parameters (describing such things as leaf lifetime for
each PFT) and land cover. Our emphasis in this article
is on uncertainty in the output NBP due to land cover
uncertainty, but it is necessary to consider this in the
context of uncertainty caused by other inputs.

2) Computation uncertainty.To compute the output un-
certainty we need a method to propagate the input
uncertainty through the model. One way of doing this
is by Monte Carlo: random values are drawn for all the

uncertain inputs and the DVM is run to produce the
required output; this is repeated many times, and the
variance in the sample of outputs produced is the mea-
sure of output uncertainty. Because of random sampling,
there is uncertainty in the Monte Carlo computation,
which can be ignored only if we have a sufficiently
large sample of outputs. In the case of the E&W carbon
flux analysis using SDGVM, Monte Carlo would be
completely impractical, since obtaining even a single
output value entails a significant amount of computing
time. An alternative, much more efficient, approach is
developed in [10], based on building emulators [15] at
a sample of sites and then interpolating the emulator
results by geostatistical methods [16]. In this case, the
computation error has two components, code uncertainty
(arising from the emulation at the sample sites) and
interpolation uncertainty.

The overall uncertainty, as measured by the total variance of
the output accounting for all these sources of uncertainty,can
be decomposed into uncertainties due to different sources.The
basic approach for this is known as variance-based sensitivity
analysis, and is described in [17]; variance-based sensitivity
analysis using emulators is presented in [18]. Formally, the
component of variance due to a given source is the proportion
of the total output variance that we should expect to remove
if we were to remove the corresponding source of uncertainty.
So the component due to input uncertainty is the proportion of
total variance that we would expect to remove if we were able
to find out the true values of all uncertain inputs. Similarly, the
component due to computation uncertainty is the proportion
of total variance that we would expect to remove if we could
compute without error (equivalent to using an infinitely large
Monte Carlo sample).

The input and computation uncertainties can be further
decomposed, for instance by calculating components due to
code uncertainty and interpolation uncertainty. The analysis
in [10] treated the land cover as fixed (according to the values
obtained from LCM2000), so the total uncertainty and its
decomposition derived therein do not include a component
due to land cover uncertainty.

B. Land cover uncertainty

In order to propagate input uncertainties through the model,
the uncertainties in the inputs must be fully characterised
statistically. We use the methodology of [13] to quantify the
uncertainty in the PFT map derived from LCM2000, and to
aggregate from the25m× 25m LCM2000 pixels to the1/6th

degree resolution sites used by SDGVM. The result of this
analysis is an estimate of the proportion of each site that
is covered by each of the PFTs, together with variances and
covariances that quantify the uncertainties in those estimates.
Thus, if γtk is the proportion of sitek that is covered by PFT
t, then we have estimatesE(γtk), which when summed over
all PFTst for a given sitek add to 1 (or 100%). Uncertainties
in each estimate are expressed first in variancesvar(γtk).
However, another important feature of uncertainty is captured
in the covariancescov(γtk, γt′k′ ), because we are interested



3

in aggregated carbon fluxes over the whole of England and
Wales. Covariances (or, equivalently, correlations) strongly
affect the uncertainty in such aggregate values. For instance,
since theγtks must sum to 1 acrosst for a givenk, there are
negative covariances between the proportions of differentPFTs
covering a given site. On the other hand, there will generally be
positive covariances between the proportions of the same PFT
at two neighbouring sites. The Bayesian method of [13] is, to
our knowledge, unique in being able to quantify uncertaintyin
land cover maps fully, accounting for covariances/correlations
as well as variances.

C. Combining land cover and other input uncertainties

The major purpose of this article is to show how the two
methodologies set out in Sections IIIA and IIIB can be put
together. In principle this is straightforward. Uncertainty in
land cover, as formulated using the method of [13], can be
propagated through the DVM on an equal footing with other
uncertainties, and the additional components of uncertainty
due to land cover isolated from those due to other sources.

The carbon flux at any given site is a weighted sum of fluxes
obtained by running the DVM assuming that the whole site is
covered by each land cover type (PFT) separately, weighted
by the proportion of the site that is covered by each PFT.
Uncertainty about land cover is therefore manifest in uncer-
tainty about these weights. Standard statistical formulaeallow
us to compute expectations and variances of weighted sums.
Furthermore, all of the formulae for calculating components
of uncertainty due to other uncertain inputs and computation
uncertainties are also linear or quadratic functions of theland
cover weights, whose expectations with respect to land cover
uncertainty may be readily computed. The details of all these
computations are set out in [19].

This is a generic methodology that may be applied to
quantify uncertainties in fluxes obtained from environmental
models, to account for uncertainty in land cover in addition
to other inputs, and to partition the resulting flux variance
according to the contributory sources of uncertainty. It has the
following steps:

1) Quantification of land cover uncertainty.Apply the
method of [13] to a suitable confusion matrix to compute
uncertainty in land cover at each model site.

2) Analysis of uncertainty due to other sources.Using the
emulation methods of [10], quantify flux uncertainty due
to uncertainty in other inputs, in the form of expecta-
tions, variances and variance components for flux at each
site under each land cover type.

3) Propagation of land cover uncertainty.Apply the for-
mula presented in [19] to account for land cover uncer-
tainty in addition to the other uncertainties.

The result is a comprehensive analysis of uncertainty in
flux at the level of individual sites (which may be presented
as maps) or aggregated over the whole region or any collection
of sites.

TABLE I
ESTIMATED FLUX FOR ENGLAND AND WALES, AND UNCERTAINTY FROM

COMPONENT SOURCES INCLUDING LAND COVER UNCERTAINTY.
VARIANCE COMPONENTS: LCOV = LAND COVER, INTRP =

INTERPOLATION, EMUL = EMULATION , SPFT =SOIL AND PFT INPUTS.

Mean Variance components Total
PFT (GtC) LCOV INTRP EMUL SPFT variance
Grass 4.37 0.0076 0.0080 0.0001 0.2296 0.2453
Crop 0.43 0.0006 0.0084 0.0001 0.0236 0.0327
DcBl 1.80 0.0071 0.0056 0.0000 0.0095 0.0221
EvNl 0.86 0.0043 0.0000 0.0000 0.0006 0.0048
Covar −0.0091 0.0010 −0.0081

TOTAL 7.46 0.0105 0.0220 0.0002 0.2642 0.2968

TABLE II
ESTIMATED FLUX AND OVERALL UNCERTAINTY FOR ENGLAND AND

WALES USING FIXED LAND COVER ESTIMATES, EITHER FROMLCM2000
(FROM [10]) OR FROM THE METHOD OF[13].

LCM2000 Cripps et al
Mean Total Mean Total

PFT (GtC) variance (GtC) variance
Grass 4.64 0.2689 4.37 0.2371
Crop 0.45 0.0338 0.43 0.0320
DcBl 1.68 0.0128 1.80 0.0142
EvNl 0.78 0.0005 0.86 0.0006
Covar 0.0010 0.0010
TOTAL 7.55 0.3170 7.46 0.2849

IV. RESULTS - UNCERTAINTY ANALYSIS OF BIOSPHERIC

FLUXES FORENGLAND AND WALES

A. England and Wales uncertainty

The primary results for the net biospheric flux (NBP)
for England and Wales in 2000 are presented in Table 1.
Table 2 gives some corresponding results before incorporating
uncertainty in land cover.

Looking first at the total across all PFTs, the estimated
total flux for England and Wales in 2000 is 7.46 MtC, with
uncertainty from all sources amounting to a standard deviation
of

√
0.2968 = 0.54 MtC. This contrasts with the earlier

result of [10] in the columns labelled “LCM2000” in Table
2, which estimated the total flux as 7.55 MtC with a standard
deviation of

√
0.3170 = 0.56 MtC. The differences in both the

estimated flux and the overall uncertainty deserve comment.
First, the estimate has reduced slightly. This occurs because
taking account of uncertainty in land cover using the methods
of [13] has led to different estimates of PFT proportions
compared with those obtained directly from LCM2000 as used
in [10]. This is due to asymmetry in the error probabilities as
discussed in [13]. The small changes in estimated land cover
proportions overall have resulted in a modest change in the
estimated total flux.

The change in the overall uncertainty appears paradoxical
at first sight, because adding uncertainty in land cover has
decreased the overall uncertainty in NBP. To understand this
paradox, Table 2 also presents the results of repeating the
analysis of [10] but with the estimated land cover proportions
from applying the method of [13]. We see that this analysis
gives the same estimates of flux as in Table 1 but with a lower
overall variance of0.2849. Hence uncertainty about land cover
has increased the overall variance by only 0.0119, increasing
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the standard deviation from 0.53 to 0.54 MtC. Notice that the
figure for variance due to land cover uncertainty in Table 1
is not 0.0119 but 0.0105. This difference is attributable toin-
teraction between land cover and other sources of uncertainty,
particularly soil and PFT inputs.

B. Uncertainty maps

The overall differences can be explored in more detail by
mapping the means and variance components.

In Figure 1(a) we see the change in estimated flux due to
using the estimates of land cover proportions in [13] instead
of those derived directly from LCM2000. Differences on a site
by site basis range from−10 to +15 gC m−2 (for comparison,
the estimated fluxes range from−100 to +200 gC m−2, so on
a site basis the changes can be 10% or more). We see that the
majority of values are negative, in accord with a reduction in
total, but with more positive values in the North of England.

Figure 1(b) shows the standard deviation in NBP at each
site attributable directly to land cover uncertainty. Values are
mostly less than 10 gC m−2 (for comparison, the site standard
deviations due to uncertainty in soil and PFT parameters are
mostly above 20 gC m−2). We tend to find low uncertainty in
regions where one PFT dominates.

A more complex story emerges in Figure 1(c), which shows
the difference in standard deviation at each site between
our analysis and that of [10]. As noted above, the overall
uncertainty is actually reduced, due to a combination of the
change in estimates (which in this case reduces uncertainty)
and the addition of land cover uncertainty. We see that at
the site level the change is by no means uniformly negative,
but instead has a broadly similar pattern to Figure 1(b). The
main exception to this is a group of sites in the North-East of
England, which show a much stronger reduction in uncertainty.
In Figure 1(d) we see conversely that these sites are the ones
with greatest uncertainty from all sources. The estimationin
these sites seems to be more unstable, with large uncertainty
after incorporating land cover effects, but with even more
uncertainty in the earlier analysis of [10].

V. CONCLUSION

The principal contribution of this work is to demonstrate
how the analysis of uncertainty in remotely sensed land cover
maps in [13] can be combined with the methods of [10] in
order to quantify the impact of possible errors in such maps on
the estimates of biospheric carbon flux produced by a Dynamic
Vegetation Model. We have illustrated our approach using the
net carbon flux for England and Wales in 2000, as estimated
by SDGVM with land cover data from LCM2000.

Possible errors in LCM2000 affect both mean fluxes and
their uncertainty. As regards mean fluxes, asymmetry in error
rates causes LCM2000 to overestimate the proportion of land
covered by some PFTs and underestimate the proportion
covered by others. The result of replacing the raw land cover
proportions from LCM2000 by the estimates in [13] is to
reduce the estimate of total flux from 7.55 to 7.46 MtC.
Although this is a small correction, and well within the
bounds of uncertainty around these figures, it indicates that

the technique can be used to improve estimates of land cover
for input to environmental models such as SDGVM.

By quantifying the uncertainty due to possible land cover er-
rors, the analysis further shows that uncertainty in soil and PFT
parameters contributes much more to the overall uncertainty
in the carbon flux than does land cover uncertainty. This is
important, since it tells us that improving land cover accuracy
is not a priority if we wish to reduce the error budget for this
particular environmental application. However, England and
Wales are unusual in that an accurate high resolution digital
landcover map is available. This not the case in many other
parts of the world, and then the balance between the impact of
land cover uncertainty and other sources of input uncertainty
may shift. More generally, the techniques presented here are
able to show whether a remotely sensed land cover product
provides adequate accuracy (after adjustment of proportions as
in [13]) for calculations by a range of complex environmental
models.

A final important point is that these techniques allow
the production ofmaps of flux uncertainties arising from
uncertainties in land cover, and hence indicate where improved
knowledge about land cover would have the biggest impact
(for example, in our calculations, the group of sites on the
coast of North-East England with particularly uncertain flux
estimates).
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