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Abstract—A methodology is proposed for consistently in- exchanges with the atmosphere, vegetation dynamics at vari
cluding uncertainty in land cover, as described by confusio ous time-scales (phenology, growth, death and replacément
matrices, with other sources of input uncertainty in quantifying disturbance, nutrient cycling and soil respiration [3].cBu

the uncertainty in model-based estimates of carbon fluxes. e DVMs also f ts of led climat del
approach is illustrated by calculating for each model grideell S also form core components of coupied climate models,

the Bayesian estimate of net biospheric carbon flux, its ovatl SO that quantifying their uncertainties is crucial in estfng
uncertainty and the proportion of uncertainty due to land cover the reliability of climate predictions.
oo o s el of ot oo o S ot DVMs e varous ypes o input daa o cary out el
eggrgy and water, and to other types of environméntal calcuation CalCUIa“an' Thef m‘f"lor dynamic control is gllmate’ and the
where land cover is an input. model grid-cell size is therefore that of the climate dayg{t
ically from 1/6 to 1 degree). Other important external irgput
are the atmospheric GCconcentration (possibly varying for
multi-year calculations), soil properties and solar ilination
(both of which are determined by geographical location).
|. INTRODUCTION Given these inputs, carbon fluxes at each grid-cell depend
on the properties of the land cover within the cell, which

T HE land surface plays a central role in the Earthiaye very strong effects on all aspects of model behavidur [4
carbon cycle. Globally, anthropogenic carbon dioxidgypically, land cover is represented in terms of propoion

(CQ,) emissions due to fossil fuel burning, cement prOdUCt'O(Ebcupancy by a small number of Plant Functional Types
and land use change (mainly from tropical deforestation),:—rs), such as evergreen needleleaf trees, C3 grassps, cro

averaged around 8.0 G_tC‘y during the 1990s, but with gtc. with each PFT having its own set of parameters that
large uncertainties, particularly in the land use change te .gntrol its response to the environment.

[1]. (Throughout this paper, COfluxes will be expressed in
carbon units, in accordance with IPCC [1]; 1 GtQ@? tonnes
of carbon, equivalent to 11/3 Gt of GQ However, only 3.2

GtC y! stayed in the atmosphere, the rest being taken Whs is onl ; . , :

y appropriate for ‘natural’ vegetation, whereasch
the ocean (2.2 GtCy) and the ]and (2.6 GtC V_)' The of the land surface is heavily affected by human activities.
latter term, referre_d t_o as t_he reS|d_uaI terrestr]a_l sm_dtf,gss Hence most DVMs exploit information on land cover derived
from_ large uncertaln_tles |n_|ts magnitude, hOV\_’ It is d'ﬂt@ from satellite data, of which there are numerous available
spatially and the biophysical processes which determine dburces ([5]-[7]; see also references in [4]). Using suctiaip

However, what is clear is that it represents a net imbalange,y cover data gives rise to uncertainty from three sources
between uptake of carbon by growth processes and emissions

of carbon due to respiration from soils and vegetation. o the choice_of land cover map: there are large differences
Inferences on the location of terrestrial €®ources and between different land cover products [4], [8];
sinks can be made by combining ground-based measurements the mapping from land cover types to PFTs [4]; _
of CO, with atmospheric transport models [2], but sparsity ® the_uncer_talnty in each |nd|V|duaI_ land cover map, w_hlc_:h
of data means that this gives only coarse spatial resolution tyPically is poorly known; even in the best cases, it is
(thousands of km); it also gives no direct insight into the described simply by a confusion matrix derived from a
biophysical processes causing the fluxes. As a result, much training set.
of our understanding of terrestrial carbon fluxes and their This paper focuses on the third type of uncertainty and
geographical distribution comes from the use of a class sfiows how it can be included in the uncertainty analysis of
biophysical models known as Dynamic Vegetation Modelsarbon fluxes calculated by a DVM on an equal footing with
(DVMs). These models calculate carbon fluxes between thie other ‘static’ data inputs, i.e. soil descriptors andl PF
atmosphere, vegetation and soil by mathematically repteseparameters. We then demonstrate its use by producing maps
ing the processes of photosynthesis, hydrology, gas andenesf net biospheric carbon flux (often called the Net Biome
Production or NBP) and NBP uncertainty for England and
GI; '3\";‘\1”5lgsevrvrigl.thkiitﬁﬁg‘éf:“;e?; ;’l UCKO”‘DU“”Q Science, Ursity of \Wales (E&W) using the Sheffield Dynamic Global Vegetation
A.gO’I—iagan and S. Quegan arégwith the University of Sheffield, Model, SDGVM [9]. It will be shown that, in this case, land
Manuscript received March 3, 2010. cover uncertainty is not a major contributor to the uncattai

Index Terms—Carbon cycle, Bayesian statistics, uncertainty,
vegetation models, emulator, kriging.

One approach to fixing the proportion of each PFT within
a grid-cell is to use a set of biophysical rules to determiree t
likelihood of a given PFT existing at that location. However



in the estimates of NBP. However, the key purpose of this  uncertain inputs and the DVM is run to produce the
paper is to provide a methodology by which land cover un-  required output; this is repeated many times, and the
certainty, expressed by a confusion matrix, carctesistently variance in the sample of outputs produced is the mea-
embedded in analysis of overall model output uncertainty on  sure of output uncertainty. Because of random sampling,
an equal footing with other input data types. It is equally there is uncertainty in the Monte Carlo computation,
applicable to other DVMs and models of land surface water  which can be ignored only if we have a sufficiently
and energy fluxes. Moreover, the method is many orders of large sample of outputs. In the case of the E&W carbon
magnitude less computer intensive than, for example, Monte flux analysis using SDGVM, Monte Carlo would be

Carlo approaches. It therefore provides a practical ambroa completely impractical, since obtaining even a single
using the information in confusion matrices, which are fte output value entails a significant amount of computing
available but rarely exploited, in the uncertainty analysi a time. An alternative, much more efficient, approach is
wide range of land surface process calculations. developed in [10], based on building emulators [15] at
a sample of sites and then interpolating the emulator

Il. DATA results by geostatistical methods [16]. In this case, the

Descriptions of the soil data and PFT parameters, including ~ 0mputation error has two components, code uncertainty
the uncertainties in these inputs, are given in [10]. Langeco (arising from the emulation at the sample sites) and
is provided by the Land Cover Map 2000 (LCM2000) [11] interpolation uncertainty.
and its uncertainty is derived from the Countryside Survey The overall uncertainty, as measured by the total variahce o
2000 (CS2000) [12]. LCM2000 has a base spatial resolutionttfe output accounting for all these sources of uncertaaaty,
25m x 25m with each pixel containing one of 26 subclasses df decomposed into uncertainties due to different soutides.
vegetation types classified from spectral informationamittd basic approach for this is known as variance-based seitysitiv
from various orbital sensors. To convert LCM2000 into analysis, and is described in [17]; variance-based seitgiti
format compatible with the SDGVM, these 26 vegetatioAnalysis using emulators is presented in [18]. Formallg, th
types are first grouped into the 5 PFTs used by the SDGVR/QmMponent of variance due to a given source is the proportion
namely deciduous broadleaf (DcBI) trees, evergreen nksadle of the total output variance that we should expect to remove
(EVNI) trees, grassland, crops and a non-productive PA&dalif we were to remove the corresponding source of uncertainty
Bare to account for urban and barren areas that take %6 the component due to input uncertainty is the proportfon o
part in the natural carbon cycle (for the rules to convet®tal variance that we would expect to remove if we were able
LCM2000 vegetation types to PFTs see [4] or [13]). LCM200® find out the true values of all uncertain inputs. Similathe
is then upscaled from it85m x 25m resolution tol /6"degree component due to computation uncertainty is the proportion
resolution in order to match the grid of the climate databasé total variance that we would expect to remove if we could
used by the SDGVM. The transformed LCM2000 map usepmpute without error (equivalent to using an infinitelygiar
in our analysis thus takes the form of 707 sites g6 Monte Carlo sample).
degree resolution across England and Wales with each sitd’he input and computation uncertainties can be further
characterised by the proportion of land covered by each @¢composed, for instance by calculating components due to
the 5 PFTs. As mentioned earlier, the SDGVM also requireésde uncertainty and interpolation uncertainty. The asialy
additional inputs in the form of monthly climate data. Thesié [10] treated the land cover as fixed (according to the \salue
were taken from [14] and are treated as known, since thbtained from LCM2000), so the total uncertainty and its
uncertainty in their values is believed to be small. decomposition derived therein do not include a component

due to land cover uncertainty.

I1l. METHODOLOGY
A. Uncertainty analysis and components of uncertainty ~ B. Land cover uncertainty

Our analysis of uncertainty in the carbon flux for E&W |n order to propagate input uncertainties through the model
in 2000 is based on NBP values output from SDGVM. Thghe uncertainties in the inputs must be fully characterised
uncertainty in the flux arises from a number of sources:  statistically. We use the methodology of [13] to quantifg th

1) Uncertainty due to model inputkr common with other uncertainty in the PFT map derived from LCM2000, and to

DVMs, uncertain inputs to SDGVM include soil dataaggregate from thesm x 25m LCM2000 pixels to thel /61
(bulk density and proportions of sand and clay), PFdiegree resolution sites used by SDGVM. The result of this
parameters (describing such things as leaf lifetime fanalysis is an estimate of the proportion of each site that
each PFT) and land cover. Our emphasis in this articie covered by each of the PFTs, together with variances and
is on uncertainty in the output NBP due to land coverovariances that quantify the uncertainties in those esém
uncertainty, but it is necessary to consider this in thghus, ifv, is the proportion of sité that is covered by PFT
context of uncertainty caused by other inputs. t, then we have estimatds(y:x), which when summed over

2) Computation uncertaintyTo compute the output un- all PFTst for a given sitek add to 1 (or 100%). Uncertainties

certainty we need a method to propagate the inpit each estimate are expressed first in variancasy.).
uncertainty through the model. One way of doing thislowever, another important feature of uncertainty is caggtu
is by Monte Carlo: random values are drawn for all than the covariancesov(v.,, vk ), because we are interested



. TABLE |
In aggregated_ carbon fluxes over the whole Of England amfgd ryatep FLUX FOR ENGLAND AND WALES, AND UNCERTAINTY FROM
Wales. Covariances (or, equivalently, correlations) rejtp COMPONENT SOURCES INCLUDING LAND COVER UNCERTAINTY

afect the uncertainty n such aggregate values. For iostan_ VATANCECOONENTELCON< o cOner INTRED,
since they,;s must sum to 1 acrosgsfor a givenk, there are

negative covariances between the proportions of diffdP&fits Mean Variance components Total
covering a given site. On the other hand, there will gengtal | PFT (GtC)| LCOV INTRP EMUL SPFT| variance
positive covariances between the proportions of the sarnfe PFGrass | 4.37] 0.0076 0.0080 0.0001 0.2296 0.2453
at two neighbouring sites. The Bayesian method of [13] is, toC"OP 0.43) 0.0006 0.0084 0.0001 0.0236 0.0327

. . . . . DcBl 1.80f 0.0071 0.0056 0.0000 0.0095 0.0221

our knowledge, unique in being able to quantify uncertainty EVNI 0.86| 00043 0.0000 00000 0.0006 0.0048

land cover maps fully, accounting for covariances/coti@ts | covar _0.0091 0.0010 —0.0081

as well as variances. TOTAL | 7.46| 0.0105 0.0220 0.0002 0.2642 0.2968
TABLE I

ESTIMATED FLUX AND OVERALL UNCERTAINTY FOR ENGLAND AND
WALES USING FIXED LAND COVER ESTIMATES EITHER FROMLCM2000

C. Combining land cover and other input uncertainties (FROM[10]) OR FROM THE METHOD OF[13)].

The major purpose of this a.rticle is to show how the two CCM2000 Cripps et a
methodologies set out in Sections IlIA and IlIB can be put Mean [ Total | Mean [ Total
together. In principle this is straightforward. Uncertgirin PFT | (GtO) | variance | (GIC) | variance

: Grass 464 | 02689 437 | 0.2371

land cover, as formulated using the method of [13], can be Crop 045 | 00338| 043 | 00320
propagated through the DVM on an equal footing with other DcBl 1.68 | 0.0128| 1.80 | 0.0142
uncertainties, and the additional components of unceytain EvNI 0.78 | 0.0005| 0.86 | 0.0006
due to land cover isolated from those due to other sources Covar a.0010 9.0019
u : TOTAL | 7.55| 0.3170| 7.46 | 0.2849

The carbon flux at any given site is a weighted sum of fluxes
obtained by running the DVM assuming that the whole site is
covered by each land cover type (PFT) separately, weightepl/, RESULTS- UNCERTAINTY ANALYSIS OF BIOSPHERIC
by the proportion of the site that is covered by each PFT. FLUXES FORENGLAND AND WALES
Uncertainty about land cover is therefore manifest in uncer )
tainty about these weights. Standard statistical formalmev A England and Wales uncertainty
us to compute expectations and variances of weighted sumsThe primary results for the net biospheric flux (NBP)
Furthermore, all of the formulae for calculating composentor England and Wales in 2000 are presented in Table 1.
of uncertainty due to other uncertain inputs and computatiqable 2 gives some corresponding results before incoripgrat
uncertainties are also linear or quadratic functions ofiéinél uncertainty in land cover.
cover weights, whose expectations with respect to landrcove | goking first at the total across all PFTs, the estimated
uncertainty may be readily computed. The details of alléhegotal flux for England and Wales in 2000 is 7.46 MtC, with
computations are set out in [19]. uncertainty from all sources amounting to a standard deviat

This is a generic methodology that may be applied wf /0.2968 = 0.54 MtC. This contrasts with the earlier
guantify uncertainties in fluxes obtained from environnaéntresult of [10] in the columns labelled “LCM2000” in Table
models, to account for uncertainty in land cover in additio®, which estimated the total flux as 7.55 MtC with a standard
to other inputs, and to partition the resulting flux varianceeviation of\/0.3170 = 0.56 MtC. The differences in both the
according to the contributory sources of uncertainty. i ttee estimated flux and the overall uncertainty deserve comment.
following steps: First, the estimate has reduced slightly. This occurs kseau
I : taking account of uncertainty in land cover using the method
1) Quantification of land cover uncertaintApply the of [13] has led to different estimates of PFT proportions

method_of [1.3] o a suitable confusion matr!x 0 CornIOUtgompared with those obtained directly from LCM2000 as used
uncertainty in land cover at each model site.

2) Analysis of uncertainty due to other sourcésing the n [10] Th'? Is due to asymmetry in th? error probabilities a
. : : discussed in [13]. The small changes in estimated land cover
emulation methods of [10], quantify flux uncertainty due . - .
L . : proportions overall have resulted in a modest change in the
to uncertainty in other inputs, in the form of expecta: .
) . . estimated total flux.
tions, variances and variance components for flux at eac . : .
) he change in the overall uncertainty appears paradoxical
site under each land cover type. . : ) . :
. . at first sight, because adding uncertainty in land cover has
3) Propagation of land cover uncertaint@dpply the for- A )
. decreased the overall uncertainty in NBP. To understargl thi
mula presented in [19] to account for land cover uncer- .
S o I paradox, Table 2 also presents the results of repeating the
tainty in addition to the other uncertainties. . . . )
analysis of [10] but with the estimated land cover propasio
The result is a comprehensive analysis of uncertainty from applying the method of [13]. We see that this analysis
flux at the level of individual sites (which may be presenteglives the same estimates of flux as in Table 1 but with a lower
as maps) or aggregated over the whole region or any coliectioverall variance 06.2849. Hence uncertainty about land cover

of sites. has increased the overall variance by only 0.0119, inangasi



the standard deviation from 0.53 to 0.54 MtC. Notice that thtbe technique can be used to improve estimates of land cover
figure for variance due to land cover uncertainty in Table fbr input to environmental models such as SDGVM.
is not 0.0119 but 0.0105. This difference is attributablénto By quantifying the uncertainty due to possible land cover er
teraction between land cover and other sources of unceytaimors, the analysis further shows that uncertainty in sadl BRT
particularly soil and PFT inputs. parameters contributes much more to the overall unceytaint
in the carbon flux than does land cover uncertainty. This is
B. Uncertainty maps important, since it tells us that improving land cover aecyr
is not a priority if we wish to reduce the error budget for this

The_ overall differences can be explored in more detal bﬁ'articular environmental application. However, Englamdi a
mapping the means and variance components.

. _ i Wales are unusual in that an accurate high resolution tligita

I_n Figure 1_(a) we see the change in es_t|ma'Fed qux_ duell‘ﬁ'ldcover map is available. This not the case in many other
using the e§t|mat§s of land cover proport_lons in [13] 'rme.?)arts of the world, and then the balance between the impact of
of th_ose de_nved directly from LCMZOOO; Differences on &Sltand cover uncertainty and other sources of input uncestain
by site basis range from10 to +15 gC m~2 (for comparison

: - ’ may shift. More generally, the techniques presented hexe ar
2
the estimated fluxes range froi.00 to 4200 gC nT*, S0 on able to show whether a remotely sensed land cover product

a site basis the changes can be 10% or more). We see thatF Sides adequate accuracy (after adjustment of proparts

majority of yalues are nggat|ve, n a_ccord with a reduction n [13]) for calculations by a range of complex environménta
total, but with more positive values in the North of EnglandmOOIeIS

_tF|gtJtr§b1t(bglsr:jqwstlthi sltan((j:iard dewauor: |_ntNB\;at eachA final important point is that these techniques allow
S| efll rll 4 atthe iz)eccyn%’o fan cover_unce{haln )t/ tLac;e he production ofmaps of flux uncertainties arising from
mostly 1ess than IV 9 (for comparison, the site standar ncertainties in land cover, and hence indicate where ingato

deviations due to uncertainty in soil a_md PFT parameters %?owledge about land cover would have the biggest impact
mostly above 20 gC ). We tend to find low uncertainty in (for example, in our calculations, the group of sites on the

regions where one PFT dommate;. . . coast of North-East England with particularly uncertainflu
A more complex story emerges in Figure 1(c), which Sho"\ésstimates)

the difference in standard deviation at each site between
our analysis and that of [10]. As noted above, the overall
uncertainty is actually reduced, due to a combination of the
change in estimates (which in this case reduces uncer}aintyThis research was funded by Natural Environment Research
and the addition of land cover uncertainty. We see that @buncil Contract No. F14/G6/105 which created the Centre fo
the site level the change is by no means uniformly negativesrrestrial Carbon Dynamics (CTCD). The authors would like
but instead has a broadly similar pattern to Figure 1(b). The thank colleagues in CTCD, particularly John Paul Gosling
main exception to this is a group of sites in the North-East éér useful discussions during the development of this netea
England, which show a much stronger reduction in uncestaint
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Fig. 1. Maps of the effect of possible errors in LCM2000. (éfddence in estimated flux, (b) standard deviation diseattributable to land cover uncertainty,
(c) difference in total standard deviation and (d) totahdtad deviation.
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