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Eliciting expert knowledge about several uncertain quantities is a complex task when those
quantities exhibit associations. A well-known example of such a problem is eliciting knowledge
about a set of uncertain proportions which must sum to 1. The usual approach is to assume
that the expert’s knowledge can be adequately represented by a Dirichlet distribution, since
this is by far the simplest multivariate distribution that is appropriate for such a set of
proportions. It is also the most convenient, particularly when the expert’s prior knowledge
is to be combined with a multinomial sample since then the Dirichlet is the conjugate prior
family.

Several methods have been described in the literature for eliciting beliefs in the form of a
Dirichlet distribution, which typically involve eliciting from the expert enough judgements to
identify uniquely the Dirichlet hyperparameters.

We describe here a new method which employs the device of over-fitting, i.e. eliciting more
than the minimal number of judgements, in order to (a) produce a more carefully considered
Dirichlet distribution and (b) ensure that the Dirichlet distribution is indeed a reasonable fit
to the expert’s knowledge. The method has been implemented in a software extension of the
Sheffield Elicitation Framework (SHELF) to facilitate the multivariate elicitation process.
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1. Introduction

There is a growing use of elicitation to express expert knowledge about uncertain
quantities in the form of a probability distribution. One such use is for the formu-
lation of prior distributions for parameters in a statistical model, to be combined
with observed data from the model by Bayesian analysis. Another is to express
uncertainty about inputs to a mechanistic model that is to be used to predict a
complex real-world process such as climate or the performance of an aero-engine
[14]. A third use is to express uncertainty about parameters in a decision analysis.
A substantial literature on elicitation is spread across many disciplines, including
statistics, psychology, economics, decision-making and various application fields
[1, 6, 10, 11, 17]. Where the results of elicitation have significant value it is usual
for a facilitator, who is knowledgeable in probability, statistics and the processes of
elicitation, to work with the expert(s) to elicit a suitable probability distribution.

Eliciting knowledge about a single uncertain quantity in the form of a univariate
probability distribution is a reasonably well studied and understood task. In partic-
ular the SHELF package [16] provides a number of templates and some supporting
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software to aid a facilitator in designing and conducting an elicitation with one or
more experts. However, eliciting multivariate distributions is a complex and much
less well understood task. Unless two or more uncertain quantities are judged to
be mutually independent it is not enough to elicit the (marginal) distributions of
each quantity separately. One approach is to elicit marginal distributions together
with some specific measures of association (such as rank correlation coefficients),
and then to use a copula to construct the multivariate distribution [12, 13]. How-
ever, the key challenge is to elicit judgements about associations between uncertain
quantities, and even experts with a background in statistics have shown limited
ability to assess correlations well. In the absence of other generic methods for mul-
tivariate elicitation, it is common for the facilitator to resort to problem-specific
solutions such as methods based on the idea of elaboration [14].

An example of a multivariate elicitation task where the quantities are inevitably
correlated is eliciting knowledge about a set of proportions that must sum to 1. The
elicited distribution must satisfy this constraint, and by far the simplest and most
widely used distributions with that property are the Dirichlet family. This makes
the Dirichlet an attractive choice for expressing beliefs about a set of proportions,
particularly when the task is to elicit a prior distribution for use in a Bayesian
analysis because the Dirichlet is the conjugate family to the multinomial likeli-
hood [3]. In Section 2 we review the Dirichlet distribution and methods previously
proposed in the literature for elicitation. We propose a new method in Section 3,
with an example presented in Section 3.4. A feature of our presentation in Section
3 is that the elicitation method is given in a way that is full and detailed but as
non-technical as possible.

2. The Dirichlet distribution and elicitation methods

We consider eliciting expert beliefs about a set of k uncertain quantities
π = (π1, π2, . . . , πk) which are constrained to lie on the (k − 1)-dimensional sim-
plex, i.e. πi ≥ 0 for i = 1, 2, . . . , k and

∑k
i=1 πi = 1. We shall think of πi as the

proportion of members of some population which belong to category i. An example
with k = 4 is the proportion of adults in the UK who are classified (according to
a criterion such as body mass index) as under-weight (i = 1), neither over-weight
nor under-weight (i = 2), over-weight but not obese (i = 3) and obese (i = 4). We
will suppose for ease of presentation that the elicitation will seek the views of a
single expert, although the method will work equally well with a group of experts
who jointly agree on their judgements.

The result of the elicitation should be a probability distribution on the simplex
representing the expert’s knowledge about π. The simplest class of distributions
defined on the simplex is the Dirichlet family, and we suppose that the result of
the elicitation should be a Dirichlet distribution unless this is not a reasonable
representation of the expert’s knowledge.

2.1 Definition and properties of the Dirichlet distribution

We say that π has the Dirichlet distribution with parameter vector d = (d1 . . . , dk),
denoted by π ∼ Di(d), if it has probability density function

f(π|d) = c(d)
k∏

i=1

πdi−1
i (1)
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(for πi > 0 and
∑k

i=1 πi = 1, otherwise the density is zero), where the normalising
constant is

c(d) = Γ
(∑k

i=1di

)
/
∏k

i=1Γ(di) .

The means and variances of π1, . . . , πk, are given, respectively, by:

E(πi | di) =
di

n
, Var(πi | di) =

di(n− di)
n2(n + 1)

, where n =
∑k

i=1di . (2)

The constraint that
∑k

i=1 πi = 1 means that the πis are inevitably correlated, as
shown by the covariance

Cov(πi, πj | di) = − didj

n2(n + 1)
.

Two properties of the Dirichlet distribution, which we will refer to as the marginal
and conditional properties, are useful for elicitation. The first property concerns
marginal distributions. Let the first m < k − 1 elements of π be denoted by
πm = (π1, π2, . . . , πm), and let π∗m+1 =

∑k
i=m+1 πi = 1 − ∑m

i=1 πi. Then πm+ =
(πm, π∗m+1) = (π1, . . . , πm, π∗m+1) takes values in the m-dimensional simplex. The
marginal property is that the distribution of πm+ is Di(d1, d2, . . . , dm, d∗m+1) where
d∗m+1 =

∑k
i=m+1 di = n−∑m

i=1 di.
A special case of the marginal property says that the marginal distribution of

πi is the beta distribution with parameters di and n− di, i.e. πi ∼ Be(di, n− di).
Indeed, the moments (2) follow directly from this fact.

The second property concerns conditional distributions. For i = m + 1, . . . , k let

π′i = πi/(1− π1 − π2 − . . .− πm) .

Notice that π′ = (π′m+1, . . . , π
′
k) satisfies the conditions to lie on the (k −m− 1)-

dimensional simplex. The conditional property is that the conditional distribution
of π′ given πm (or πm+) is Di(dm+1, . . . , dk). By repeatedly using this property we
can decompose the Dirichlet distribution into a sequence of k− 1 beta conditional
distributions.

It is worth noting an implication of the two conditions. The sum of the parameters
of the Dirichlet conditional distribution of π′ given πm+ is equal to d∗m+1, which is
the last parameter of the marginal Dirichlet distribution of πm+.

2.2 Elicitation methods

The constraint that
∑k

i=1 πi = 1 means that although there are k individual quan-
tities πi only k − 1 are uncertain, since once any k − 1 are specified the k-th is
determined by the constraint. Instead of the k parameters di, the Dirichlet family
is sometimes parametrised with pi = di/n (i = 1, 2, . . . , k) and n. Although there
now appear to be k + 1 parameters there is a constraint that

∑k
i=1 pi = 1, so that

there are in effect only k. In this parametrisation we see that the pis control the
means (or other location measures) of the πis, while n controls the overall amount
of uncertainty. We could therefore ask the expert to provide a judgement of the
expected value of each πi together with one further judgement concerned with
uncertainty to identify n.
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Methods that have been proposed in the literature for eliciting a Dirichlet dis-
tribution can mostly be viewed as suggesting alternative kinds of judgement of
location to identify the pis and/or alternative kinds of judgement of uncertainty to
identify n. For instance, to elicit a value for pi the evidence from the psychology
literature is that people do not judge expectations well, so we could ask the expert
for a median value of πi because the judgement of equal probability (above and
below the median) is generally made more accurately. We could alternatively ask
for the expert’s mode, which is convenient because unlike the median it has the
closed form expression (di− 1)/(n− 2) provided both numerator and denominator
are positive.

Some other approaches are based on predictive distributions. If we consider N
draws from the population, then the expectation of the number Nj to be drawn
from category i is pi. So we could ask the expert to specify their mean of this
number for each i (constrained to sum to N) [4]. Chaloner and Duncan [5] ask the
expert to specify the most probable set of counts (N1, N2, . . . , Nk), i.e. the joint
mode of the predictive distribution. It is worth noting that we can also elicit the
pis using simple probabilities by considering the case N = 1. Then pi is simply the
probability that a single draw from the population is found to be in category i.

One way to identify n is simply by eliciting a measure of uncertainty about a
single πi. Suppose for instance that the expert is asked for a judgement of the
variance of π1. If pi has also been specified then from the equations (2) we can
deduce n by

n = {p1(1− p1)/Var(π1 | d)} − 1 .

Any other specification of uncertainty about π1 (such as the interquartile range)
might be used in a similar way to fix n.

Other approaches elicit n as a measure of the amount of information that the
expert has. Through the Dirichlet distribution’s role as the conjugate family for
sampling with replacement from the population [2, 15], n can be thought as defin-
ing the strength of the expert’s information in terms of an equivalent number of
observations from the population. Another way to think of the strength of informa-
tion is as determining the extent to which the expert’s judgements would change
when presented with additional information. Thus, if the expert were to observe
one draw from the population, and that item was found to be in category i, then
(using the Dirichlet conjugacy) the expert’s expected value of πi would change
from pi = di/n to p′i = (di + 1)/(n + 1). So if the expert were asked to imagine
making that observation and to specify what his/her expectation for πi (or some
equivalent location judgement) would then be, we can deduce n as

n = (1− p′i)/(p′i − pi) .

This is known as the device of imaginary observations [4, 9]. Chaloner and Duncan
[5] more explicitly link n to a measure of uncertainty by asking the expert to specify
the probability for a range of values around the joint mode of (N1, N2, . . . , Nk).

2.3 Beyond the Dirichlet

The fact that the Dirichlet distribution has only one parameter to control overall
uncertainty is a serious limitation. It means that as soon as we have specified n, for
instance through the variance of one of the πis then the variances of all the πis are
now determined by n and the pis. If the expert’s uncertainty about different πis did
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not agree reasonably well with that system of constraints then their beliefs could
not be adequately described by a Dirichlet distribution. A number of generalisa-
tions of the Dirichlet distribution have been proposed to provide more flexibility
in representing an expert’s knowledge. One very flexible family is the finite mix-
tures of Dirichlet distributions [7], but mixtures introduce a very large number
of additional parameters and thereby demand a correspondingly large number of
additional judgements to be elicited.

An early generalisation of the Dirichlet distribution was introduced by Dickey [8].
It is based on the conditional property of the Dirichlet, but removes the constraint
noted at the end of Subsection 2.1. Thus Dickey allows the conditional distribution
of each π′m+1 conditional on π1, . . . , πm to be any beta distribution. There are
now 2(d − 1) parameters in this generalised Dirichlet distribution, and these can
clearly be specified by asking the expert for judgements about these conditional
distributions. The disadvantages of this approach are that it is dependent on the
order in which we place the categories, and that it is difficult for the expert to
make judgements about quantities such π′m+1.

3. An elicitation method for expert beliefs about proportions

The discussion of methods in Section 2 is not intended to be an exhaustive review
but instead to exemplify the range of methods already in the literature for eliciting
judgements about a set of proportions in the form of a Dirichlet or generalised
Dirichlet distribution. The papers cited all date from a time when the limitations
of Bayesian computation meant that analysis would be extremely difficult unless
the prior distribution were specified as a member of the relevant conjugate family.
So the literature of the time was expressed in terms of eliciting a Dirichlet dis-
tribution, rather than as eliciting expert beliefs about proportions. With modern
computing methods, conjugate distributions are still convenient and widely used
but Bayesian analysts should use them only when they genuinely reflect expert
knowledge adequately. Another difference since the time of those papers is that
elicitation methodology has moved on. The purpose of our article is to present
a novel approach to eliciting expert beliefs about a set of proportions in a way
that reflects modern elicitation methodology and also facilitates the assessment of
whether a Dirichlet distribution is a suitable choice in the light of the expert’s
judgements. The outcome of this approach is either a Dirichlet distribution that is
an acceptable representation of the expert’s knowledge, or else a conclusion that
the expert’s knowledge is such that no Dirichlet distribution would represent it
adequately.

3.1 Overview

Our approach has two key features.

(1) We make use of the device known as over-fitting. That is, we elicit more
judgements from an expert than are needed to fit a Dirichlet distribution.
Over-fitting has two principal benefits. First, in practice the expert’s judge-
ments will not all fit perfectly a Dirichlet distribution with any d, because
the expert’s knowledge may not be perfectly represented by a Dirichlet dis-
tribution and because the expert’s judgements are necessarily themselves
imprecise. The degree to which a Dirichlet distribution with a well chosen d
can fit the expert’s elicited values allows us to assess whether the Dirichlet
distribution is an adequate representation. Second, in the same way that
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more data allows more accurate estimation in statistical analysis generally,
more elicited quantities allow us to more accurately identify a good choice
of d.

(2) We use the Sheffield Elicitation Framework (SHELF). SHELF is
a package of documents, templates and software providing struc-
tured elicitation protocols that conform to good modern elicita-
tion practice [16]. It is available for download free of charge at
http:www.tonyohagan.co.uk/shelf/index.html. The software routines
are implemented in the free R software (http:www.r-project.org) for
statistical computing and graphics. Over-fitting is a feature of the SHELF
elicitation protocols.

SHELF is of course just one framework for eliciting a distribution for each πi and
an experienced facilitator might well choose to use another method. However, we
recommend the use of SHELF for less experienced facilitators and our presentation
in the next section is based on this. Furthermore, we have developed add-ons for
SHELF to implement our method. Although the official SHELF package currently
only contains procedures for eliciting univariate distributions, we hope that our
add-ons will be included in the next official release. They are otherwise available
at http://tonyohagan.co.uk/shelf/dirichlet.html.

It should be noted that over-fitting has been a part of previously proposed elic-
itation schemes for a Dirichlet distribution. For instance, Chaloner and Duncan
[5] suggest using their method of specifying n with different values of the number
N of imaginary future observations. Similarly, in methods which specify n using
uncertainty in a single πi, such as Dickey et al. [9], this can be done with each
πi to obtain various values of n. We adopt a similar approach, but with a clear
procedure to obtain a ‘best’ n and to assess adequacy of fit.

A simple outline of our method is as follows. First, we use SHELF to elicit the
expert’s beliefs about each πi in turn. If the expert’s elicited judgements can be ad-
equately represented by a beta distribution in each case, then SHELF identifies the
parameters of the respective beta distributions. We then adjust these to conform
to the constraint that

∑k
i=1 πi = 1. Each beta distribution will in general imply a

different value of n, so the next step is to find a best fitting value for n. Finally,
we assess whether this value adequately represents all the expert’s judgements.

3.2 Detailed procedures

A description of the steps involved in the proposed method for eliciting a Dirichlet
distribution follows. The method is applicable for eliciting from multiple experts,
but for ease of exposition we assume there is only one expert, and that the expert
is female.

I. Preparation and training
As in any elicitation process, it is important to prepare carefully. There is

advice on these matters in the SHELF package and much additional information
in O’Hagan, Buck and cols. [17]. We simply note here that it is important for
the expert to be committed to providing her best judgements, to train the expert
in the meaning of personal probability judgements and distributions, and to
familiarise her with the specific elicitation method that will be used, ideally
through the use of a practice exercise.

II. Elicit beta distributions for each πi using SHELF.
For each πi in turn, the SHELF framework is followed to elicit a Beta distribution.
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Within SHELF there are several methods available to elicit a distribution, involving
different judgements to be elicited from the expert. The example in Section 3.4
uses the quartile method. The example also illustrates how to use the SHELF R
functions to fit a beta distribution to the expert’s elicited judgements.

Having fitted a beta distribution, it is important for the facilitator to verify
that the expert acknowledges that the fitted distribution is a reasonable repre-
sentation of her beliefs about πi. SHELF methods all incorporate an element
of over-fitting, because only two judgements are required to fit a unique beta
distribution but we always elicit at least three judgements. The fitted distribution
is necessarily a compromise because in general no beta distribution will exactly
fit all the elicited values. The software selects the beta distribution which fits the
expert’s judgements as closely as possible. The facilitator now feeds back various
summaries of the fitted distribution, including showing the density function and
reporting how closely this distribution fits the expert’s judgements. This is an
opportunity for the expert to say that this is not an adequate match to her beliefs.
In that case the facilitator will explore the nature of the expert’s dissatisfaction,
perhaps eliciting additional judgements. If no beta distribution can be adequate
(for instance if the expert insists that her beliefs should be represented by a
bimodal density function), then this procedure terminates with the conclusion that
no Dirichlet distribution can represent the expert’s beliefs about the whole π vector.

III. Check and adjust means.
Assuming that beta distributions can adequately represent the expert’s beliefs

about each πi separately, the next step is to check consistency with the constraint
that

∑
πi = 1. Suppose that the elicited distribution for πi is Be(di, ei). Then this

implies E(πi) = di

di+ei
. The constraint now requires that

k∑

i=1

di

di + ei
= 1 . (3)

In practice, it is unlikely that the separate elicitations will lead to di and ei values
satisfying this equation. In the common situation when all of the elicited median
values are less than 0.5, the beta distributions will all be positively skewed. Even if
the implication of this is explained and fully understood by the expert, the temp-
tation is to specify median values which sum to 1. As a result we may often find
that the sum of expected values exceeds 1. Whether greater or less than 1, it is
necessary to adjust the elicited distributions so that (3) is satisfied. If the discrep-
ancy is large, outside the range [0.9, 1.1] for instance, then it may be necessary to
review the entire elicitation to resolve the expert’s apparent misunderstanding.

A small discrepancy can simply be corrected by a mechanical adjustment to the
di and ei values. If the sum on the left hand side of (3) is r 6= 1, then new values
d∗i and e∗i are given by

d∗i = di/r , e∗i = di + ei − d∗i . (4)

The facilitator might choose to give new feedback to the expert on how closely
the new fitted, mean-adjusted Beta distributions match her originally elicited
judgements. However, in practice it is unlikely that the quality of fit will be
changed appreciably when r is close to 1.

IV. Finding a compromise value of n.
At this point you should have an acceptable beta distribution for each hyper-
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parameter of the Dirichlet distribution of interest. The separate beta distributions
correspond to a Dirichlet distribution if the values of ni = d∗i + e∗i are all equal.
In practice this is unlikely to happen. If a Dirichlet distribution is to be found
that is an acceptable representation of the expert’s beliefs then we seek a compro-
mise value of n to act as a common value to replace the disparate nis. Given any
proposed n we define the corresponding Dirichlet distribution to be

Di(d(n)) , (5)

where the parameter vector d(n) has i-th element

di(n) = n
d∗i

d∗i + e∗i
.

What value of n would produce a distribution (5) that best reflects the expert’s
knowledge? In general, a higher n implies stronger information and an appropriate
compromise value should lie between nmin = mini {ni} and nmax = maxi {ni}.
Ideally we should choose the n value that makes the Dirichlet fit all of the expert’s
elicited judgements as accurately as possible. However, this entails a very large
computation in practice and is surely unnecessary because a value chosen by simpler
or more approximate methods can be expected to provide an essentially equivalent
fit. The following might be considered.

• Use a compromise value, somewhere around the middle of the range from nmin

to nmax. The strict middle value is nmid = (nmin+nmax)/2, but we might equally
consider the mean n̄ =

∑
ni/k or the median nmed of the nis. Any one of these

might be expected to approximate the ideal value nopt.
• Use a simplified optimisation. Create a simple objective criterion F (n), and

choose n to optimise this criterion. A criterion F (n) that we have found useful in
practice is based on how closely the Dirichlet distribution Di(d(n)) matches the
standard deviations of the separately elicited beta distributions. In the Appendix,
this criterion is formulated and shown to yield the optimised value

nopt =

(∑k
i=1 v∗i (ni + 1)∑k
i=1 v∗i

√
ni + 1

)2

− 1 , (6)

where

v∗i =
d∗i (ni − d∗i )
n2

i (ni + 1)

is the variance of the i-th fitted, mean-adjusted beta distribution Be(d∗i , ni−d∗i ),
using (2).

A quite different approach is:

• Use a conservative value. Choose n = nmin because it does not express more
knowledge about any element πi than was elicited.

In using nmin we choose not to seek a Dirichlet distribution to represent
adequately the expert’s knowledge. Instead, we are using a Dirichlet distribution
for convenience and choose to play safe by implying no more knowledge about the
πis as a whole than the expert has expressed about any one of them.
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V. Proceed to feedback.
If we have computed a representative central value like nmid or n̄, or if we have

found a simplified optimal value nopt, it is now important to present feedback again
to the expert on the implications of the fitted Dirichlet distribution. In particular,
this will entail looking at the implied marginal density for each πi and seeing
how closely it matches the original elicited values. If the expert finds the fitted
Dirichlet distribution acceptable, then the procedure terminates with this elicited
distribution as its conclusion.

On the other hand, particularly if the original ni values were not reasonably
similar, we may find that the fit is now too poor for the Dirichlet to adequately
represent the expert’s knowledge. In this case the procedure terminates with the
conclusion that no Dirichlet distribution would represent a suitable joint distribu-
tion for π.

Note that if we have chosen to use the conservative value nmin then no useful
purpose is served by this feedback step. If we were to carry it out we might find the
not-unexpected result that it does not fit the expert’s judgements well, whereas it
was never intended to. The procedure concludes with the chosen Dirichlet distri-
bution Di(d(nmin)).

3.3 New SHELF materials

We have developed additional materials for the SHELF package to
facilitate the use of this procedure, available for download from
http://tonyohagan.co.uk/shelf/dirichlet.html. These include a new
template for recording the elicitation, new R functions for doing various
computations and guidance notes on how to use these materials.

3.4 Example

This example concerns the efficacy of a new antibiotic in patients who are
hospitalised in the Pediatric Intensive Care Unit (PICU) and who are severely
infected by pneumococci (which is associated with pneumonia, meningitis, and
septicaemia, among other conditions). The possible results after the infection are:
to survive in good condition, to have a sequel, or to die. An expert is asked to
provide judgements about the proportions of patients who will have each of these
possible results. Denoting these proportions by π1, π2 and π3, these form a set of
proportions that must sum to 1.

I. Preparation and training. The facilitator chooses to use the SHELF package,
and so has downloaded the necessary materials. He has also installed the rpanel
library in order to use the SHELF R functions, as described in the instructions.
SHELF offers a variety of specific protocols for eliciting knowledge about a single
distribution, and the facilitator chooses to use the Quartile method.

The purpose of the elicitation is explained to the expert, including the nature of
the antibiotic and the classification of patients according to three possible results
after pneumococcal infection. The facilitator also gives training in probability
judgements, including a practice exercise to familiarise the expert with the
Quartile method. The facilitator completes the “SHELF 1 (Context)” form to
record basic details such as date, time, participants, purpose of the elicitation and
what training was given.

II. Elicit beta distributions for each πi using SHELF. The facilitator now follows
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the Quartile procedure as set out in the “SHELF 2 (Distribution) Q” form. One
important point to note is that when SHELF fits a beta distribution it will in
general fit a scaled beta over the range [L,U ], where L and U are lower and
upper plausible bounds for the quantity of interest that are judgements elicited
from the expert. For the purposes of the method developed here, it is important
that unscaled beta distributions are fitted. Therefore, whichever SHELF protocol
is used, instead of asking the expert for judgements of L and U these are fixed at
L = 0 and U = 1. The facilitator enters these values into the SHELF software.

The expert was first asked for his judgements about the proportion π1 of patients
in the PICU that he believes will survive in good condition after receiving the new
drug. He gave a median value of 0.55 for π1, confirming that he judged it equally
likely that π1 would be less than 0.55 or greater than 0.55. Following appropriate
questioning from the facilitator, as described in the SHELF guidance, the expert
also gave values of 0.60 for the upper quartile and 0.50 for the lower quartile. These
values are shown in Figure 1 (at left), which are screen shots from the SHELF
software. The fitted beta distribution has parameters d1 = 25.4, e1 = 20.8. This
beta distribution was shown to the expert and feedback is given in the form of the
10-th and 90-th percentiles of the Be(25.4, 20.8) distribution, respectively 0.46 and
0.64. The expert agreed that according to his judgement there was a probability
of approximately 10% in each case that π1 would lie below 0.46 or above 0.64.
Furthermore, the beta distribution Be(25.4, 20.8) fitted the expert’s judgements
well, since its lower quartile, median and upper quartile are 0.50, 0.55 and 0.60
respectively, agreeing to two decimal places with the expert’s elicited quartiles.
The expert confirmed that the fitted distribution was a reasonable representation
of his knowledge about π1 (Table 1).

0 0.25 0.5 0.75 1

median: 0.55

0 0.14 0.28 0.41 0.55

lower quartile: 0.5

0.55 0.66 0.78 0.89 1

upper quartile: 0.6
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0
1

2
3

4
5

0.1 quantile: 0.46
0.9 quantile: 0.64

Sum of squares: 1.83e−06

Beta( 25.4 , 20.8 )
mean =  0.549 , sd =  0.0724
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Figure 1. SHELF windows. The quartiles, median and beta distribution for outcomes: at left good outcome
π1; and at right, the quartiles, median and the beta distribution for patients with sequels π2.

The facilitator next asked the expert to think about π2, the proportion of pa-
tients who would have sequels. However, the expert asked to deal with π3 first, the
proportion who would die, saying that he felt better able to judge this proportion.
His judgements were based on his experience with a similar antibiotic. Following
the Quartile elicitation protocol again, he gave values of 0.15 for the median, 0.11
for the lower quartile and 0.20 for the upper quartile. The fitted beta distribution
is shown in Table 1, and through feedback and comparison of the fitted quartiles
with the elicited values was confirmed as a reasonable representation of the expert’s
knowledge about π3.

The expert was then asked to think about π2, although he admitted to feeling
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least sure about this proportion. Having stated median values of 0.55 and 0.15
for π1 and π3, respectively, he chose a median of 0.30 for π2, but gave quite wide
quartile bounds; his lower quartile is 0.22 and his upper quartile is 0.35. The fitted
beta distribution is Be(6.51, 15.5). Table 1 shows the elicited and the fitted values
and the facilitator pointed out that the upper quartile of the fitted distribution
was a little higher than the elicited value, while the median was a little lower. The
facilitator asked whether the expert would (a) accept the fitted distribution (and
implicitly change his median and quartiles to those of the fitted distribution), (b)
rethink and adjust his judgements in a different way, or (c) hold to his original
judgements. The expert chose option (a). Had he chosen option (b), a fresh beta
distribution would have been fitted to his new judgements and fresh feedback given.
Had he chosen option (c) the elicitation according to the present procedure would
have had to terminate with the conclusion that the expert’s knowledge could not
be represented adequately with a Dirichlet distribution.

Table 1. Elicitation and fitted values for the example

Good Outcome Sequel Dead

The elicited median and quartiles 0.55 (0.50 - 0.60) 0.30 (0.22 - 0.35) 0.15 (0.11 - 0.20)
The fitted beta parameters Be(di, ei) Be(25.4, 20.8) Be(6.51, 15.5) Be(4.46, 23.6)
The fitted 10th and 90th percentiles 0.46 - 0.64 0.18 - 0.42 0.078 - 0.25
The fitted median and quartiles 0.55 (0.50 - 0.60) 0.29 (0.22 - 0.36) 0.15 (0.11 - 0.20)
The fitted mean and standard deviation 0.550 (0.072) 0.296 (0.095) 0.159 (0.068)
The sum of the parameters, ni = di + ei 46.2 22.01 28.06

III. Check and adjust the means. Applying equation (3), the sum of the mean
values (given in Table 1) is r = 1.004. This is so close to 1 that the adjustment
indicated in equation (4) would have negligible effect in this case. Therefore no
adjustment was applied and we set d∗i = di, e∗i = ei.

IV. Finding a compromise value of n. We have three ni values shown in Table
1. Computing the various derived n values defined in Section 3.2 we find the six
figures in the first column of Table 2.

These computations may be done using the new SHELF R software mentioned
in Section 3.3.

The four compromise values nmed, nmid, n̄ and nopt cover a substantial range, with
nmid being 20% larger than nmed. The second column of Table 2 shows the cor-
responding values of the simple optimality criterion. We see that the two extreme
values nmax and nmin produce much higher values of F (n) than the compromise
values, but it is noticeable that n̄ is very close to optimal. Figure 2 was also pro-
duced using the new SHELF R functions and shows the optimal nopt = 30.975 but
also shows that n values between 30 and 32 are all very close to optimal.

V. Proceed to feedback.

Table 2. The criterion F (n) for different values of n

n F(n)

nmax = 46.2 (0.072− 0.072)2 + (0.066− 0.095)2 + (0.053− 0.068)2 = 0.001038
nmin = 22.01 (0.104− 0.072)2 + (0.095− 0.095)2 + (0.076− 0.068)2 = 0.001050
nmed = 28.06 (0.092− 0.072)2 + (0.085− 0.095)2 + (0.068− 0.068)2 = 0.000505

nmid = 34.105 (0.084− 0.072)2 + (0.077− 0.095)2 + (0.062− 0.068)2 = 0.000499
n̄ = 32.09 (0.086− 0.072)2 + (0.079− 0.095)2 + (0.063− 0.068)2 = 0.000466

nopt = 30.975 (0.088− 0.072)2 + (0.081− 0.095)2 + (0.065− 0.068)2 = 0.000461
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F (n), with the minimum shown at n = nopt.

The facilitator proposed the value of nopt = 30.975 and further feedback was
now provided to the expert in order to check whether the compromise Dirichlet
distribution Di(d(nopt)) would adequately represent the expert’s knowledge. In
this case, the three separately elicited values of 46.2, 22.01 and 28.06 covered a
substantial range, so that any compromise distribution would imply probabilities
for the individual πis that might differ from the expert’s initial judgements in
ways that he would not find acceptable. In particular, n = 30.975 implies more
uncertainty about π1 (because n1 = 46.2 is considerably larger) and less uncertainty
about π2 and π3 than the expert originally specified.

Table 3. Original fitted values and optimum fitted values to feed back to the expert for the example

Original values Good Outcome Sequel Dead

The elicited median and quartiles 0.55 (0.50 - 0.60) 0.30 (0.22 - 0.35) 0.15 (0.11 - 0.20)
The fitted beta parameters Be(di, ei) Be(25.4, 20.8) Be(6.51, 15.5) Be(4.46, 23.6)
The fitted 10th and 90th percentiles 0.46 - 0.64 0.18 - 0.42 0.078 - 0.25
The fitted median and quartiles 0.55 (0.50 - 0.60) 0.29 (0.22 - 0.36) 0.15 (0.11 - 0.20)
The fitted mean and standard deviation 0.550 (0.072) 0.296 (0.095) 0.159 (0.068)
The sum of the parameters, ni = di + ei 46.2 22.01 28.06

the optimum value n = 30.975 implies:

The beta parameters Be(di, ei) Be(17.03, 13.945) Be(9.162, 21.813) Be(4.923, 26.052)
The 10th and 90th percentiles 0.44 - 0.66 0.19 - 0.40 0.082 - 0.25
The median and quartiles 0.54 (0.50 - 0.62) 0.30 (0.23 - 0.34) 0.15 (0.11 - 0.20)
The mean and standard deviation 0.551 (0.0879) 0.296 (0.0811) 0.16 (0.0643)
The sum of the parameters, ni = di + ei 30.975 30.975 30.975

The facilitator again invited the expert to respond to the feedback by (a) ac-
cepting that the medians, quartiles and percentiles implied by the fitted Dirichlet
distribution were adequate representations of his knowledge and beliefs (despite the
differences from his original judgements), (b) revising one or more of his original
judgements which now seem to have been ill-judged, or (c) insist that his original
judgements should stand and that the fitted Dirichlet distribution implies values
that are not close enough to those judgements. The expert chose response (a),
feeling that the differences from his original judgements were within the range of
accuracy of those judgements. Had he chosen response (b), the elicitation process
would have gone back to step II for refitting and feedback on individual beta dis-



January 18, 2013 13:7 Journal of Applied Statistics cJASguide˙dirichlet11

Journal of Applied Statistics 13

tributions using the revised judgements. Had he chosen response (c), the facilitator
would have attempted to identify an alternative compromise value of n that would
be acceptable, and failing that the procedure would have ended with the conclusion
that no Dirichlet distribution could adequately represent the expert’s knowledge.

The Dirichlet distribution with parameters d = (17.03, 9.162, 4.923) was agreed
as the outcome of the elicitation.

4. Discussion

In this article, we address a multivariate elicitation problem, the elicitation of a
joint distribution for a set of proportions which must logically sum to 1.The key
features of the contribution presented here are as follows.

• In most contexts, the most convenient distribution for a set of proportions is
a Dirichlet distribution. Our method delivers an elicited distribution provided
that such a distribution can adequately represent the expert’s knowledge and
judgements.

• Our method includes specific steps of overfitting and feedback which allow the
judgement of whether a Dirichlet distribution can indeed represent the expert’s
knowledge adequately, and has clear rules to identify when it cannot.

• The elicitation protocol builds on established good practice in elicitation of uni-
variate distributions, and in particular we recommend the use of the SHELF
system for eliciting the marginal beta distributions.

• We have provided freely-available templates and software to augment the stan-
dard SHELF package, in order to assist facilitators in applying our method in
practice.

The whole area of multivariate elicitation has been only sparsely studied in the
literature. Although there are existing methods for eliciting a Dirichlet distribution,
we believe that the above features make our method unique.

Multivariate elicitation is difficult. One reason is that for any given context there
are few standard multivariate distribution to use to represent the expert’s knowl-
edge. For a set of proportions, there are alternatives to the Dirichlet, but they would
be much more complex to use in practice. One direction for future research is to
consider how to employ alternative distributions when our procedure determines
that a Dirichlet distribution is not adequate. Another future research direction is
to tackle other kinds of multivariate elicitation and develop methods with the same
kind of key features.
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Analytical solution to optimisation of n

We have k categories, with elicited beta distributions having adjusted parameters
d∗i and e∗i . The categories have different values of ni = d∗i + e∗i and we seek a
compromise n to minimise a criterion F (n) which we define to be the sum of squared
differences between the standard deviations implied by the individual Be(d∗i , e

∗
i )

distributions and the compromise Di(d(n)) distribution, whose parameters are

di(n) = d∗i n/ni .

The variance of Be(d∗i , ni − d∗i ) is

v∗i =
d∗i (ni − d∗i )
n2

i (ni + 1)
,

whereas the variance of the i-th parameter in the Di(d(n)) distribution is

vi =
di(n)(n− di(n))

n2(n + 1)
=

(d∗i n/ni)(n− d∗i n/ni)
n2(n + 1)

=
d∗i (ni − d∗i )
n2

i (n + 1)
= v∗i

ni + 1
n + 1

.

So the problem is to minimise

F (n) =
k∑

i=1

(√
v∗i −

√
vi

)2
=

k∑

i=1

v∗i

(
1−

√
ni + 1
n + 1

)2

with respect to n. We can do this simply by solving d
dnF (n) = 0. We find

dF (n)
dn

=
k∑

i=1

2v∗i

(
1−

√
ni + 1
n + 1

)
1
2

√
ni + 1
n + 1

.
1

n + 1

=
1

n + 1

k∑

i=1

v∗i

(
1−

√
ni + 1
n + 1

) √
ni + 1
n + 1

,

which equals zero if

k∑

i=1

v∗i
(√

n + 1−√ni + 1
)√

ni + 1 = 0

∴
√

n + 1
k∑

i=1

v∗i
√

ni + 1 =
k∑

i=1

v∗i (ni + 1)

∴ n =

(∑k
i=1 v∗i (ni + 1)∑k
i=1 v∗i

√
ni + 1

)2

− 1 .

It is easy to see that F (n) has just one minimum, and so this is the solution that
is denoted by nopt in (6).
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