
Polynomial Chaos: A Tutorial and Critique
from a Statistician’s Perspective

Anthony O’Hagan
University of Sheffi eld, UK

March 24, 2013

Abstract

This article is written in the spirit of helping recent efforts to build
bridges between the community of researchers in fields such as applied
mathematics and engineering, where the term UQ began, and the commu-
nity of statisticians who work on problems of uncertainty in the predictions
of mechanistic models. It is addressed to researchers and practitioners in
both communities.

The first purpose of the article is to explain polynomial chaos, one
of the key tools of the first community, in terms that will be readily
understood by a statistician in the second community. The second purpose
is to explain to researchers in the first community some aspects of PC, both
in theory and in practice, that a statistician might regard as deficiencies
or limitations.

1 Introduction

The coming together of SIAM (the Society for Industrial and Applied Mathe-
matics) and ASA (the American Statistical Association) to organise a conference
in 2012 on Uncertainty Quantification was a major initiative to bring together
two disparate communities concerned with broadly the same problem, namely to
quantify uncertainty in the predictions of mechanistic simulation models. The
conference coincided with an initiative in 2011—12 by SAMSI (the Statistical
and Applied Mathematical Sciences Institute) with the same purpose. One of
the two communities is founded in applied mathematics and various fields such
as engineering and physics that use large science-based simulation models. I
will call this the AM community. The other community is founded in statistics,
where the application of statistical methods to quantify uncertainties in the pre-
dictions of mechanistic models has been a significant research area for at least
a decade (with precursors going back much further than that). I will refer to
this as the Stat community.
It is the AM community that is responsible for the term UQ (Uncertainty

Quantification). To a member of the Stat community, however, UQ seems a

1



curiously inappropriate term because (a) it sounds as though it should cover the
whole of Statistics, since one way of viewing the science of Statistics is precisely
as the science of quantifying uncertainty, whereas (b) the uncertainties that are
studied in the AM community do not even cover the range of uncertainties that
statisticians would recognise in the predictions of models. Nevertheless, UQ is
the de facto term that has been accepted by the SIAM/ASA joint initiative.
The principal aspect of uncertainty quantification that is studied in the AM

community is propagation of input uncertainty. We write the simulator as a
function η. Given input x, the simulator produces output y = η(x). Typi-
cally, both x and y are vectors. Letting the input be uncertain, we represent
this with a random variable X, in which case the output is also a random
variable Y = η(X). The problem of uncertainty propagation (UP) is to char-
acterise the distribution of Y for a given distribution of X. A simple approach
to the UP problem is to use Monte Carlo sampling, which involves drawing a
large random sample {xi : i = 1, 2, . . . , N} of values of X from its given dis-
tribution, running the simulator for each input xi and so obtaining a sample
{yi = η(xi) : i = 1, 2, . . . , N} from the distribution of Y . However, science-based
simulators are often complex and take appreciable computing time to evaluate,
so that the large number N of simulator runs required by Monte Carlo is im-
practical.
Another approach involves building a surrogate η̂, also known as a meta-

model, such that η̂(x) is an approximation to η(x) for any x. Then we can ap-
proximate the distribution of Y by a Monte Carlo sample {ŷi = η̂(xi) : i = 1, 2, . . . , N}.
This will require a suffi ciently large number of runs of the original simulator η
to build the surrogate η̂, but the chief idea of surrogates is that η̂ is much sim-
pler than η and so η̂(x) can be evaluated orders of magnitude more quickly
than η(x). Thus it is becomes feasible to create a very large Monte Carlo sam-
ple. The principal drawback to the use of surrogates is that we only obtain an
approximation to the distribution of Y .
The AM and Stat communities have developed different tools to facilitate

more effi cient UP. Whereas the most widely used tool in the Stat community
is Gaussian process emulation, the AM community principally uses polynomial
chaos expansions. Both approaches can be viewed as based on the use of sur-
rogates, but with quite different structures. The coming together of the two
communities, and resulting sharing of methodologies, should benefit the field of
UQ. In particular, we hope that the relative strengths and weaknesses of the
two kinds of tools can be explored with a view to identifying the contexts in
which each should be preferred.
The theory and methods of polynomial chaos (PC) are not well understood

by most statisticians, and the primary purpose of this article is to present a
tutorial on PC methods for members of the Stat community. However, it also
serves as a critique from the perspective of a statistician, so that I also identify
herein a number of apparent deficiencies or limitations which I hope the AM
community will be able to respond to. These issues are raised throughout the
main development in sections 2 and 3, generally in the form of Remarks, and
then more fully in the final section 4.

2



It would no doubt also be useful for someone from the AM community to
present a comparable tutorial and critique on Gaussian process emulators.

2 Polynomial Chaos expansions

2.1 Functions of random variables, the univariate case

A PC expansion (PCE) is a way of representing an arbitrary random variable
of interest as a function of another random variable with a given distribution,
and of representing that function as a polynomial expansion. I will begin by
looking at the first component of this idea – representing one random variable
as a function of another.
Let X be the random variable of interest, and let Ξ be the random variable

in terms of which X will be expressed. In PC theory, Ξ is called the germ. For
the moment, I will assume that both X and Ξ are scalar (i.e. univariate) random
variables. The choice of germ is a modelling choice. For instance, we may in
some cases choose to represent X as a function of a uniform random variable,
and in other cases as a function of a standard normal variable.
Formally,the basic idea is to write

X = f(Ξ) , (1)

and we seek an appropriate function f(.), such that if Ξ has the given germ
distribution then X will have its required distribution.
The first point to note about the representation (1) is that not only is this

always possible but indeed there are always many such representations for given
distributions of X and Ξ.

Example 1 A canonical example uses the inverse CDF transform. Let the
CDF of X be Fx and let Ξ be a uniform random variable on [0, 1], then as long
as X is a continuous random variable its CDF will be invertible and hence

X = F−1x (Ξ)

is a solution.

Example 2 It is now a simple step to use an arbitrary germ Ξ with invertible
CDF Fξ. Since Fξ(Ξ) is a uniform random variable, we can write

X = F−1x (Fξ(Ξ)) , (2)

so that f = F−1x ◦ Fξ.

Example 3 To see that there are always many solutions, we only need to par-
tition the range of Ξ into k segments with equal probabilities k−1 and do the
same with X. We can then map any segment of Ξ into any segment of X, and
the various permutations produce k! solutions. This will of course very rarely
lead to sensible constructions, but it makes the point that there are always many
functions f that solve the basic requirement (1).

3



Example 4 In particular instances, of course, there may be much simpler so-
lutions then those obtained with the inverse CDF transform. If X has a χ21
distribution and the distribution of Ξ is standard normal, then we just have
X = Ξ2. It is easy to see that this is different from the general inverse-CDF so-
lution (2) because CDFs are monotone, and therefore (2) is always a monotone
transformation.

Before progressing further it is useful to explore the meaning of a PC rep-
resentation, and in particular the sense in which the two sides of (1) are equal.
In Example 4, for instance, we have X = Ξ2 and also X = F−1x (Fξ(Ξ)), where
Fξ is the standard normal CDF and Fx is the χ21 CDF. Clearly, if we interpret
these literally as equations relating predefined random variables X and Ξ they
cannot both be true. In statistical notation it would be more correct to write
X ∼ f(Ξ) instead of (1), which is read ‘X is distributed as f(Ξ)’, meaning that
X has the same distribution as f (Ξ). Such a statement holds simultaneously for
both representations in Example 4. Nevertheless, the equals sign is appropriate
when we interpret the PC representation as a construction. That is, if we wish
to construct a random variable X with a desired distribution using a random
variable Ξ that has a given germ distribution, then in Example 4 X = Ξ2 and
X = F−1x (Fξ(Ξ)) are both valid constructions. The different constructions yield
different random variables X, but they both have the desired distribution.

This is indeed the appropriate interpretation when PC is used in UP. Suppose
that the simulator η is fast, so that Monte Carlo is feasible. The input X has
a given distribution and we need to sample from that distribution. Computer
systems generally have inbuilt algorithms to sample from a uniform distribution
over [0.1], and sometimes other standard distributions such as the standard
normal. If the distribution of X is not one for which an inbuilt algorithm is
available we need a transformation of the form (1). The interpretation is that
the distribution we can sample from is the germ distribution, and so if Ξ is
sampled using that inbuilt routine and we compute X = f(Ξ) then X will be a
sample value from the required distribution. Indeed, the inverse CDF transform
of Example 1 is a standard way of sampling from an arbitrary distribution given
a system-generated uniform random variable.
The message of the examples presented above is that, given distributions for

X and Ξ there is no unique function f to satisfy (1). There are in principle
many different solutions, different functions f that would take a germ random
variable Ξ with its specified distribution and construct a random variable X
with the desired distribution. Furthermore, additional solutions are available
using different germ distributions. As we explore PC expansions and their use
in uncertainty propagation, we will identify the considerations that arise in
choosing a germ distribution and then choosing a representation f .

2.2 PCEs, the 1D case

A PCE takes a representation (1) and expands the function f in a polynomial
series. The specific polynomial basis used is a set of orthogonal polynomials with

4



respect to the distribution of the germ. In order to define those polynomials, it
is helpful to introduce the notation

〈g1, g2〉 =

∫
g1(ξ)g2(ξ)pξ(ξ)dξ (3)

for the inner product of any two functions g1 and g2 with respect to the proba-
bility density function pξ of Ξ.
Then the polynomial basis comprises polynomials ψ0 = 1, ψ1, ψ2, . . ., where

ψj is a polynomial of order j and where they satisfy the orthogonality condition
that for all j 6= k

〈ψj , ψk〉 = 0 .

It is worth noting that all of the random variables ψj(Ξ) for j ≥ 1 have zero
mean (by virtue of ψj being orthogonal to ψ0), and so 〈ψj , ψj〉 is the variance
of ψj(Ξ) and orthogonality says that the covariance between any two different
ψj(Ξ)s is zero – they are uncorrelated. A related interpretation that may be
useful is that the inner product defines a metric on the space of random variables
g(Ξ) with finite variance. (The same metric is used in Bayes linear theory.)

Remark 5 There is an arbitrariness in how each ψj is scaled. In principle we
could construct a unique orthonormal basis set by insisting that 〈ψj , ψj〉 = 1 for
all j (so that the ψj(Ξ)s have variance 1), and this would simplify subsequent
formulae. However, another convention which simplifies implementations is to
require the leading coeffi cient of each polynomial to be 1, so we do not impose
orthonormality. Note also that other orthogonal/orthonormal bases could be
used that are not polynomial systems (e.g. Fourier-type bases), and these might
be useful in some special applications.

By construction, we get an orthogonal basis set starting from any initial germ
distribution provided that this distribution has moments of all orders (otherwise
it would not be possible to define the infinite set of polynomials).

Example 6 If the germ is uniformly distributed we get Legendre polynomials.
The classic Legendre polynomials correspond to a uniform germ on [−1, 1], but
can be adapted to the case more usually met in Statistics of uniformity on [0, 1].

Example 7 If the germ is standard normally distributed we get the Hermite
polynomials, the first few of which are ψ0(ξ) = 1, ψ1(ξ) = ξ, ψ2(ξ) = ξ2 − 1,
ψ3(ξ) = ξ3 − 3ξ, ψ4(ξ) = ξ4 − 6ξ2 + 3.

Example 8 If the germ is an exponential random variable on [0,∞) we get the
Laguerre polynomials.

It should be remembered that although these last three examples are widely
used for the cases of bounded, unbounded and half-bounded domains there are
many other orthogonal basis sets that could be constructed. On an unbounded
domain, one could no doubt construct (with some diffi culty!) a set of orthogonal

5



polynomials with respect to a logistic distribution (but not with respect to a
Cauchy or t distribution because these do not have moments of all orders) and
these would be different from the Hermite polynomials. The key point in PC
theory is that the polynomial basis is linked with the germ distribution. The
choice of germ dictates the polynomial basis functions.

Remark 9 The use of Hermite polynomials with a normal germ is reminiscent
of other expansions in statistics, such as the Gram-Charlier A series, but that
expands a density function in terms of the standard normal density and a Her-
mite polynomial expansion. It is very important to remember that the PCE is
an expansion to construct a random variable with a desired distribution as a
function of another given random variable. It is not an expansion of the density
function of X or even of its CDF.

Now using the orthogonal basis polynomials we write

X = f(Ξ) =

∞∑
j=0

xjψj(Ξ) . (4)

In PC theory the combination of xj (the mode strength) and ψj (the mode func-
tion) is called the j-th mode. Given f and the ψjs there is a unique expansion
(4) in which the mode strengths are given by

xj = 〈f, ψj〉 / 〈ψj , ψj〉 . (5)

Any expansion of X in the form (4) is called a PCE. Since there are many
possible functions f for given X and Ξ distributions, there are many possible
PCEs of a given X using a given germ. They will differ only in the series of
mode strengths.
For practical reasons, PCEs are often truncated to a finite number of terms,

hence we consider

Xp = fp(Ξ) =

p∑
j=0

xjψj(Ξ) . (6)

It will of course no longer be true that the constructed Xp has the required
distribution. Instead we suppose it to have a distribution that approximates to
that required of X.

2.3 Practicalities

Consider now the question of how to choose and construct a PCE in practice
to represent a given X distribution. The first step is to select (the distribution
for) a germ Ξ. As we have seen, orthogonal polynomial systems are known for
some specific choices of Ξ, but will otherwise be much more diffi cult to con-
struct. In practice, then, the choice will typically be between uniform, normal
or exponential distributions.

6



The next step is to devise a suitable representation function f . Several
examples have been given to show that this is always possible and moreover that
there will always be many solutions. In practice, though, apart from the general
solution (2) it will not be straightforward to find representations. Considerable
research effort has in the past been spent on effi cient ways to sample from given
distributions using uniform pseudo-random numbers, but many good sampling
methods are iterative or implicit and I cannot see how those could be adapted
for PC representations. Even the CDF solution requires the CDF of X to be
known explicitly, which may not always be the case in practice.
Having chosen Ξ and f , the PC expansion is completed by deriving the co-

effi cients xj (the mode strengths), which means applying equation (5). The
denominator 〈ψj , ψj〉 will in general be available from the construction of the
orthogonal polynomials, but the numerator is an integral of the form (3) and
unless f is particularly simple it will generally be necessary to evaluate these
integrals numerically. When f itself requires numerical computation, as is of-
ten the case when the inverse CDF solution is used, the computation of mode
strengths can be a non-trivial task.
In practice, as noted above, the PCE will be truncated to a finite number of

terms, and so the number p is the final choice to be made in developing a PCE.
Ideally p should be large enough for the approximation to be good. In practice,
this is achieved in the usual way by increasing p until the mode weights appear
to stabilise and new weights are small. However, this is really assessing whether
fp approximates well to f , and does not guarantee that the distribution of Xp

approximates well to that of X. This could be checked for any given p by Monte
Carlo sampling.
Truncation is where it matters what PC representation we use for a given X.

A good representation f in practice is one for which the truncated representation
fp with small p will be a good approximation.

Example 10 The representation of a χ21 variable as X = Ξ2, will have an exact
polynomial expansion with p = 2, whereas the inverse-CDF representation may
require large p to be any use at all.

Remark 11 It seems to me that achieving suffi ciently accurate finite PCEs of
the form (6) must be a major challenge. Furthermore, this implies that PC
methodology is, at least in some of its aspects, an art.

2.4 Multivariate PC theory

In general both X and Ξ can be vectors. If X is a vector, then the mode
strengths xj must be vectors. If Ξ is a vector, then the polynomial ψj(Ξ)
is multivariate and it is convenient to write it as Ψj . In the case where the
components of Ξ are independent Ψj is a tensor product of the polynomial
bases for each Ξi, and specifically when Ξ comprises m iid germs, we can let Ψ

7



have index j = (j1, j2, . . . , jm) and write

Ψj(ξ) =

m∏
i=1

ψji(ξi) . (7)

It is usual to truncate the PCE now to include all mode functions (7) with total
order

∑m
i=1 ji less than or equal to p.

Remark 12 Even this truncated expansion has
(
m+p
m

)
terms. This number is

of order mp and so grows rapidly with p and m, which seems to me a potential
diffi culty when it comes to doing PC in many dimensions.

The dimension of Ξ does not need to match that of X. Here are some
examples to illustrate the possibilities.

Example 13 A scalar X may usefully be expanded in terms of a vector Ξ. A
simple example is the χ22 distribution which has the expansion X = Ξ21 + Ξ22 in
terms of two independent standard normal germs. The truncated expansion is
exact with p = 2. In contrast, any expression in terms of a single germ is likely
to be more diffi cult to derive and to approximate with a finite PCE.

Example 14 Another example is the Box-Muller transform for generating stan-
dard normal random variables. If Ξ1 and Ξ2 are independent uniform germs on
[0, 1] then X =

√
−2 ln Ξ1 cos(2πΞ2) is standard normal. This uses a 2D germ

to generate a 1D X, but the full Box-Muller uses the same 2D germ to generate
a 2D pair of independent standard normals, using Y =

√
−2 ln Ξ1 sin(2πΞ2) for

the other.

Remark 15 The independence of X and Y in the last example arises from
the fact that the sine and cosine are respectively odd and even functions of Ξ2.
Since the even-order Hermite polynomials are even and the odd-order ones are
odd functions, this means that the PCEs for X and Y are supported on disjoint
subsets of the basis functions. I imagine this may be a useful device in other
contexts.

Example 16 In principle, a vector X could be expanded in terms of a scalar
Ξ. I remarked already that two functions of a single germ could be uncorrelated
or even independent. To see the general case, first look at a discrete analogue.
If X is a discrete random vector then its joint distribution is just a discrete set
of joint probabilities. If Ξ is a continuous germ, even though it is scalar, we can
partition it according to the set of discrete probabilities in the joint distribution
of X and map each set to the corresponding discrete vector value of X. Passing
to the limit, even if it is hard to see how one could really construct such a
representation for a continuous vector X it is easy to see how a (finite) PCE
in the single germ Ξ could approximate the distribution of the vector X to any
desired accuracy.

Broadly speaking, the interest in good finite PCEs tends to lead to repre-
sentations in which Ξ has dimension at least as large as, and often larger than,
that of X.

8



2.5 PCEs for random fields

Moving up to even higher dimensions, we can consider a PCE for a random
process (or field) X(t), where the argument is conventionally denoted t but
could be time, space or anything else. Now there are as many random variables
as elements in the space of t values, which is of course usually (uncountably)
infinite. The appropriate PCE representation would be

X(t) ≈
p∑
j=0

xj(t)ψj(Ξ) . (8)

where the mode strengths xj(t) are now functions of t. Despite my earlier
comments that one can in principle construct a PCE for a vector X from a
scalar Ξ, it is hard to imagine any practical PCE for a random field based on a
finite-dimensional Ξ that could be exact, even as p → ∞. Any representation
(8) must in practice be an approximation both because it uses a finite number
p of modes and also because it is based on a finite-dimensional germ.
An apparently different kind of expansion, Karhunen-Loève (KL), is reason-

ably well-known in statistics. It can be written in the form

X(t) = E {X(t)}+

∞∑
j=1

√
λjφj(t)Ξj . (9)

Here the λjs (λ1 ≥ λ2 ≥ ...) and the φj(t)s are the eigenvalues and eigen-
functions of a spectral decomposition of the covariance function of X(t). This is
exact as an infinite expansion, but again becomes approximate when we truncate
it. The germs Ξj are uncorrelated, zero mean, unit variance random variables.
When X(t) is a Gaussian process, the Ξjs are independent N(0, 1).

Remark 17 Although not obvious initially, KL is a PC expansion. First, it is
a PCE because it represents X(t) as being distributed as some function of the
germs. That function actually does have the form of (8) if we remember that
in any system of orthogonal polynomials the zero order ‘polynomial’is constant
and the first order is linear. Therefore, (9) is a PCE with tensor product mode
functions of the form (7) up to total order 1. If we truncate to p terms (plus the
constant j = 0 term which in (9) is the mean function) it fits (8) exactly with
a p-dimensional Ξ vector. So the KL expansion is a particularly simple form of
PCE.

Remark 18 KL strictly only holds for t in a bounded interval or region. This
may not be a problem in practice.

Remark 19 Whilst the Gaussian process representation does seem to me to
have value, I am less sure of the usefulness of KL for other cases. In general, it
really serves only as an expansion of the covariance kernel of the process, and
says nothing about the distributions of the germs Ξj. Finding these to match
any required properties of X(t) beyond its second-order moments looks like an
enormous challenge.

9



3 Propagation

The primary objective in the AM UQ community’s approach to UP is to create
a PCE expansion for the output of a computer model.

3.1 The basic output PCE

Suppose that we have a computer model that produces output y = η(x) when
given input x.
We suppose that the input is uncertain and so is a random variable X.

Consequently the output is a random variable Y = η(X). In practice, both X
and Y are generally vectors and may even be random fields. We suppose that
we have a PCE for X of the form (6), and we seek to represent the output with
another PCE

Y = g(Ξ) =

∞∑
j=0

yjψj(Ξ) , (10)

or in practice its truncated form

Y ≈ gp(Ξ) =

p∑
j=0

yjψj(Ξ) . (11)

A key consideration here is that it is usual to employ the same germ (vector)
Ξ and the same set of mode functions ψj for the PCE of Y as was used for the
PCE of X. Furthermore, I understand that it is also usual to specify the same
finite-order truncation level p for both expansions.

Remark 20 I presume that in principle one might use different germs, although
I suspect that this would make the analysis much more complex. One could surely
use expansions of different orders.

The implication is then that∑p

j=0
yjψj(Ξ) ≈ η

(∑p

j=0
xjψj(Ξ)

)
. (12)

Notice that in practice this cannot be other than an approximation. For general
η equation (12) cannot hold exactly because any computer model of practical
interest is nonlinear. In fact it will not even be a finite-order polynomial, and
so we could not achieve equality by allowing more modes in the PCE of Y . As
usual, the expansion only becomes exact when p→∞.
As before, the pragmatic approach is to increase p until mode strengths

stabilise and new weights become small, hoping that this will signify that the
approximation is adequate.

Remark 21 There may be numerical-analytic bounds on the approximation er-
ror in some instances, but these are useless in practice. I believe it is fair to say
that the PCE approach does not quantify the approximation error as a compo-
nent of uncertainty.

10



3.2 Intrusive solutions

In order to complete the PC analysis, we need to find the mode strengths yj in
(12). Methods to do this are classified in the AM community as intrusive and
non-intrusive. I will briefly describe two methods of each type
Intrusive methods start with (12), substituting an equality sign for the ap-

proximation sign. On the assumption that equality holds, the strengths yj are
found by a method known as Galerkin projection. The first intrusive method
comes from applying the Galerkin approach directly to (12).
From the original equation y = η(x), we derive a system of equations

〈y, ψk〉 = 〈η(x), ψk〉 ,

for k = 0, . . . , p. Substituting both sides as in (12), we have〈∑p

j=0
yjψj , ψk

〉
=
〈
η
(∑p

j=0
xjψj

)
, ψk

〉
. (13)

Now because of orthogonality the left hand side is just yk 〈ψk, ψk〉. If the func-
tion η is suffi ciently simple we can also evaluate the right-hand side. The result
is a system of p+ 1 equations (k = 0, . . . , p) in p+ 1 unknowns (y0, . . . , yp). We
now need to modify the original computer code, or more realistically to write a
new program, to solve those equations.
This direct approach is unlikely to be practical in general because of the

complexity of η, and because for the great majority of simulators we do not
have an explicit equation for η(x). The second intrusive method applies in
the very common situation where the simulator actually solves a system of
differential equations. The output of such a simulator is generally a function of
time and/or space, with the differential equations governing the evolution. We
write the simulator now in the implicit form M(y(t), x) = 0, where t denotes
time and/or space andM typically involves derivatives with respect to t.
Now Galerkin projection gives the system of equations

〈M(y(t), x), ψk〉 = 0 , k = 0, . . . , p ,

in which we substitute the PCE expressions y(t) =
∑p
j=0 yj(t)ψj(ξ) and x =∑p

j=0 xjψj(ξ). Because the differential equations themselves are often not par-
ticularly complex, the inner product 〈M(y(t), x), ψk〉 may be derivable in closed
form, and orthogonality will typically simplify the expressions. We are left with
a system of p+1 differential equations in the yj(t)s. Solution will involve writing
a new program to solve those equations.
In short, both intrusive methods involve two steps.

1. Substitute the PCEs for both input and output into the model equations,
apply Galerkin projection and evaluate the necessary inner products.

2. Write a program to solve the resulting system of equations.

11



The apparent simplicity of the above formulation can be deceiving. The
reality is that intrusive methods are complex to apply and my understanding
is that they have been little used in practice. Some of the complexity and
limitations are indicated in the following series of remarks.

Remark 22 Intrusive methods are tailored to the particular simulator. Alge-
braic manipulation (and perhaps ingenuity) is required to formulate the system
of equations, and a new program is required to solve them. This is a task rather
like developing an adjoint for a computer code.

Remark 23 The set of equations obtained is specific to the number p of modes
in the expansion. The solver program could presumably be written for a range
of p values, although this will increase the complexity of the task.

Remark 24 If we change the distribution of X, then provided we express it
in a PCE with the same germs and orthogonal polynomials we can solve this
with the same program, just changing the xks. But we have seen that different
distributions may be best expressed using different germs, in which case the
intrusive method would require both the above steps to be repeated.

3.3 Non-intrusive solutions

We have seen that intrusive methods require one to use knowledge of the equa-
tions that are solved in η. In contrast, non-intrusive methods treat the simulator
as a black box. They attempt to solve the explicit version of the problem,∑p

j=0
yjψj(ξ) = η(fp(ξ)) ,

where fp(ξ) =
∑p
j=0 xjψj(ξ), using runs of the simulator at various values of ξ.

The first non-intrusive method discussed here uses numerical integration and
the mode strength equation (5), which now becomes

yk = 〈η ◦ fp, ψk〉 / 〈ψk, ψk〉 , k = 0, 1, . . . , p (14)

The denominator 〈ψk, ψk〉 is in practice known exactly, and we use numerical
integration to evaluate the numerator

〈η ◦ fp, ψk〉 =

∫
η(fp(ξ))ψk(ξ)pξ(ξ)dξ .

One approach is Monte Carlo, in which values of ξ are sampled randomly from
the germ distribution pξ(ξ), If there are N such values, ξ(1), . . . , ξ(N), then the
integral is evaluated as N−1

∑N
s=1 η(fp(ξ

(s)))ψk(ξ(s)). Alternatively, we can use
a quadrature rule. For instance, for a N(0, 1) germ, a Gauss-Hermite quadrature
rule is an obvious choice.

12



Remark 25 Monte Carlo typically requires a large number of simulator runs,
which is impractical for computationally-intensive models, but on the other hand
in higher dimensions, tensor products of quadrature rules demand even more
simulator runs. Although sparse quadrature rules exist and are more effi cient,
still quadrature seems impractical when the germ vector is high-dimensional.

The second non-intrusive method also takes a sample of ξ values, but now
treats the values η(fp(ξ

(s))) as observations, say zs, in a regression model

zs =
∑p

j=0
yjψj(ξ

(s)) + εs ,

in which the unknown regression coeffi cients y0, y1, . . . , yp are estimated by least
squares (or some other inferential method, e.g. Bayesian inference). The design
points ξ(s) would now be chosen according to regression design principles, or
simply to cover the input space. In general, random sampling from the germ
distribution would not be effi cient.
The fact that in this approach we need an error term εs is a clear result of

the PCE for Y being only an approximation. The residual error variance from
fitting this regression will indicate just how good the approximation is.

Remark 26 Regression is a common way of building a surrogate model and
polynomials are the commonest regressor variables for this purpose. Using or-
thogonal polynomials helps with the numerical stability of the computations, but
orthogonality then needs to be with respect to the empirical distribution of the
design points, rather than with respect to the germ distribution. Using PC offers
no advantages that I can see.

3.4 Propagation with the output PCE

Suppose that, by whatever method we use (and there are undoubtedly others
not mentioned here), we have obtained values for the strengths y0, . . . , yp. (In
the case where the simulator output is a vector, these strengths are vectors, and
when the output is a function the strengths are functions.) We now have the
PCE for the output in the form y =

∑p
j=0 yjψj(ξ). UP entails characterising the

distribution for the computer model output Y , as induced by the distribution
of the input X. This distribution, often called the uncertainty distribution,
is (approximately) the distribution induced by the germ distribution and the
(truncated) PCE (11), which can be seen as a surrogate. The CDF can be
found by Monte Carlo sampling from the germ distribution (and of course this
is now fast because we are evaluating the surrogate, not the simulator).
Other properties can also be found by Monte Carlo, but it is worth noting

that the first two moments of Y can be obtained exactly using properties of the
orthogonal polynomials. Thus,

E(Y ) = y0 , (15)

E(Y 2) =

p∑
j=0

yj 〈ψj , ψj〉 , (16)

13



from which the variance of Y follows trivially. For some purposes, it may be
that having only the mean and standard deviation of Y is an adequate charac-
terisation of the output uncertainty.
Expressions for higher moments may be obtained similarly, but for instance

the third moment requires the evaluation of integrals of the form∫
ψj(ξ)ψk(ξ)ψ`(ξ)pξ(ξ)dξ .

For the most widely used germ distributions, these can no doubt be obtained
in closed form, but for third and higher moments there are rapidly increasing
numbers of such integrals involved. If higher moments are required it may be
easier to evaluate them by Monte Carlo.

4 Discussion

The preceding sections have set out the basic theory of polynomial chaos expan-
sions and their use for uncertainty propagation, to the extent that I understand
them. In this final section I will present a number of personal reflections on
these methods from the perspective of a statistician who is much more famil-
iar with the UQ methods of the Stats community. If the overall tone of these
reflections is negative, this may be due to misunderstandings on my part and I
would very much welcome comments from the AM community.

4.1 Practicalities

In my various remarks in the preceding sections, I have made a number of
comments on the practicalities of building PC expansions in general, and in
particular for the output of a computer code. It may be helpful to reiterate my
concerns here.
In practice PC expansions must be truncated. It seems to me intrinsically

diffi cult to build expansions for the inputs X that are suffi ciently accurate (in
the sense that the distribution of the expansion is close to that of X) without
using a large number p of terms. This would appear to be particularly true when
(as will always be the case in practice) X is a vector, unless the elements of X
are independent and each is represented in a PCE with its own germ. When
X is a random field, only the Karhunen-Loève expansion (a very special and
simple form of PCE) seems to be usable, and then only for a Gaussian random
field. See Remarks 11, 12 and 19.
Developing a PCE for the model output Y requires the mode strengths yj

to be evaluated. Methods termed intrusive and non-intrusive are considered in
the AM UQ community. Intrusive methods are mathematically appealing, and
the second method has the particularly attractive feature that it can result in
a surrogate for an output that is a function of time and/or space. I am not
aware of any other surrogate method that could do that except by the laborious
process of building surrogates for numerous individual points on the function.

14



However, intrusive methods entail much more work (Remarks 22 and 23) and I
understand that they are rarely used in practice.
Non-intrusive methods do not make use of knowledge about the function η,

and instead operate by evaluating a sample of outputs η(fp(ξ
(s))) for a (random

or designed) sample of points ξ(s) in the space of the germ(s). As such, they do
not seem essentially different to me from other kinds of surrogate methods which
build an approximation to η using a sample of outputs η(x(s)), except that the
latter are surely intrinsically more accurate by virtue of the fact that they do not
additionally approximate x by the truncated expansion fp(ξ). The regression
method in particular seems to be basically the same as response-surface methods
for building surrogates, but with the restriction that the regressor functions must
be the orthogonal polynomials ψj . See Remark 26.
Having developed an approximate, truncated PCE for the model output, the

fact that it is based on orthogonal polynomials with respect to the germ dis-
tribution(s) allows the mean and standard deviation of Y to be obtained very
simply (but it is important to remember the expansion is only approximate and
so equations (15) and (16) are not really exact). However, to characterise the
distribution of Y more fully or in any other ways requires numerical computa-
tion, for instance using Monte Carlo sampling from the germ distribution(s).
In this sense, it is no different from any other surrogate method which creates
a computationally quick approximation to the simulator and computes UP by
Monte Carlo sampling from the distribution of X. If the distribution of X is
not uniform, the Monte Carlo sampling will require an algorithm to draw from
that distribution using uniform pseudo-random numbers, but this is completely
analogous to building a PCE for X. In fact it is more general because sampling
algorithms do not need to be explicit functions like the PC function f . So unless
the mean and standard deviation would represent an adequate UP characteri-
sation, I do not see any distinctive advantage of PCEs over other surrogates.
Another general issue is what happens if we wish to change the distrib-

ution of X. The original computer model is designed to work for any x in
the relevant domain, and this versatility is an important feature of simulators
generally, allowing them to be used in a variety of situations. To achieve the
same versatility for UP, we would wish to be able to handle any reasonable
distribution for X. However, this is not readily achieved with PC methods. In
principle, changing the distribution of X and retaining the same germ distrib-
ution(s) just means using different mode strengths xj . However, any change in
these strengths will entail recomputing the output strengths yj (Remark 24).
Furthermore, a truncation level p that works for one distribution of X may yield
a very poor approximation with another distribution. Other surrogate methods
in my experience do not have this problem.

4.2 The nature of the output PCE

I have presented some intrusive and non-intrusive methods for computing the
strengths yj to create what I have called the (truncated) output PCE Y ≈
gp(Ξ) =

∑p
j=0 yjψj(Ξ). The implication here is that as p → ∞ it tends to a

15



valid PC expansion (10) for the model output Y . That is, the limit of gp is
the function η ◦ f , where f is a valid non-truncated PC representation for the
distribution of X. However, this is clearly not the case. In all of the methods
we have examined, the construction of the yjs uses the finite PCE for X, and
so the limit of gp can at best be the function η ◦ fp. At best, the output PCE is
a (truncated) PCE for an approximation to the computer model. All the other
surrogate modelling techniques that I am aware of build surrogates for η, and
so do not entail this additional approximation.
The next question I want to consider is whether the limit of gp is indeed the

function η ◦ fp. This will be true if the mode strengths yj satisfy the equation
(5), which in this case becomes

yj = 〈η(fp), ψj〉 / 〈ψj , ψj〉 . (17)

Consider each of the four construction methods considered in Section 3 – the
explicit and implicit intrusive methods and the quadrature and regression non-
intrusive methods.
The explicit approach clearly does satisfy (17) by inspection of (13). How-

ever, it is not clear to me whether the implicit method does. I would appreciate
some clarification and a formal proof of this. Moving to the non-intrusive meth-
ods, again it is obvious from (14) that the quadrature approach does solve (17),
but again it is by no means clear that the regression method does; indeed it
seems to me that it does not.
It is clear that we can treat the output PCE as a surrogate for the computer

model, because this only implies that it is some kind of quick approximation.
However, the nature of the approximation is complex. First, a truncated PCE is
an approximation. Second, it is at best an approximation to an approximation,
the second approximation resulting from replacing η ◦ f by η ◦ fp. Third, it is
not clear that the truncated PCE actually is the truncation of a valid PCE for
η ◦ fp.

4.3 The output PCE as a surrogate

As a surrogate model, the output PCE will generally be much faster to compute
than the simulator η ◦ f that it approximates. We should be able to use it for
all the purposes to which surrogates are typically put. However, its argument
is not x but ξ; it is not explicitly a surrogate for η. If I want a surrogate
with argument x, I can use the PC surrogate provided I can convert from ξ to
x. Suppose that f is invertible, so that ξ = f−1(x). Then (but only then) I
argue that it is reasonable to treat

∑p
j=0 yjψj(f

−1(x)) as a surrogate for η(x).
I believe that in the case of univariate X and Ξ it would not be diffi cult to show
that there is a unique monotone increasing f . If so, then it would have to be
the inverse-CDF transformation (2), whereupon ξ = f−1(x) = F−1ξ (Fx(x)).

Remark 27 Note that I would not suggest inverting the truncated form fp to
give the surrogate

∑p
j=0 yjψj(f

−1
p (x)). Not only does it entail another approxi-

mation but even if f is monotone there is no guarantee that fp will be. In some

16



applications, f may not be known, with fp constructed from partial information
about the distribution of X. It is not immediately obvious to me that even if fp
is monotone it will be unique.

In the more important multivariate case we can do this inversion for each
element separately when each element of X has a separate PC representation
in terms of the corresponding element of Ξ. I suppose it would not be feasible
otherwise. The following are common uses of surrogates.

1. Uncertainty analysis (UA). This is what we have been calling UP: X is
uncertain, and we seek to characterise the distribution of Y = η(X). As
we have discussed in Section 3.4, the output PCE can be used for this
purpose. If X is random, approximating η(f(Ξ)) when Ξ has the specified
germ distribution is obviously equivalent to approximating η(X) when X
has its original distribution since this is also the distribution of f(Ξ).

2. Sensitivity analysis (SA). SA seeks to identify which elements (or groups of
elements) of the input vector X are most influential on the model output.
Local SA involves examining derivatives of y with respect to the elements
of the input vector x. Because it is trivial to differentiate both y and x with
respect to the elements of ξ, using their respective PCEs, I presume we
can readily compute local SA (and it does not depend on the distribution
of X). However, unless f is invertible I suspect the answer will depend
on the choice of f . Variance-based SA again treats X as random, and I
presume the output PCE can be used for this in the same way as for UA.

3. Prediction. The simplest use of a surrogate is simply to approximate the
model output η(x) at some specified x (when the computer time required
to run the simulator and compute η(x) directly is not available). This
may only make sense when f is invertible.

4. Optimisation. Another common use of surrogates is to search for the x
that minimises η(x). I foresee this also being a problem unless f−1 is well
defined.

4.4 Accounting for all uncertainties

Uncertainty is everywhere around us, and comes in many forms with many
sources. This is why Uncertainty Quantification sounds to me as though it
ought to address much more than UP. I acknowledge that the emerging field
that has been given the name UQ has hitherto really only concerned itself with
UP, but I will take this opportunity to mention just two aspects of uncertainty
that I believe have to be addressed as part of any exercise that deserves the
name of Uncertainty Quantification. These aspects are very much addressed
within the Stats UQ community and I hope that by raising them here I can
persuade the AM community to give them serious consideration, and thereby
to widen the remit of UQ itself.

17



The first is simply quantifying the uncertainty in the input vector X. In
this article I have assumed, as is the case in UQ generally, that the distribution
of X is given, but where does it come from? This is a serious problem in its
own right and techniques for input uncertainty quantification are every bit as
important as tools to propagate the uncertainty in X through the model. Those
techniques include analysis of source data and elicitation of expert judgement.
A starting reference is O’Hagan (2012).
The second area is uncertainty concerning the real world system that is

modelled by η(x). All models are imperfect, either in their form, in the numerical
values of parameters in equations or in the solution of those equations. UP
characterises uncertainty about Y = η(X), but it does not address the real
question of uncertainty about the underlying true system. If we denote this as
Z, then Z differs from Y due to model discrepancy and uncertainty about model
discrepancy means that there is additional uncertainty about Z. Quantifying
this should also be part of UQ, and again it is something that is seriously
addressed in the Stats UQ community. A starting reference is Brynjarsdóttir
and O’Hagan (2013).
However, even if we ignore these additional sources of uncertainty, there is

more uncertainty in Y than is addressed in PCE uncertainty propagation. We
have seen that the resulting characterisation of output uncertainty is necessarily
approximate because the output PCE is an approximation to Y itself. This is
true of all surrogate methods, and all should acknowledge this extra component
of uncertainty regarding Y . When Monte Carlo is used for UP with many runs
of the simulation model itself, rather than via a surrogate, this uncertainty is
explicitly quantified in the Monte Carlo sampling precision. In the case of the
output PCE, formal accounting for that additional uncertainty will be diffi cult
because as discussed in Section 4.2 it has three distinct components (plus even
more uncertainty due to error in estimates of the yjs!). This does not, however,
justify ignoring the additional uncertainty.

4.5 PC versus GP

I will end with some personal comments on the relative merits of PC expansion
and Gaussian process (GP) emulation for propagating and analysing uncertainty
in computer models, i.e. for UQ.

• Surrogate bases. Both the PC and GP methods build surrogates, and
there are other surrogate methods which are advocated by various au-
thors. A PC expansion has an orthogonal polynomial basis, and as soon
as we consider using polynomials of order three or more they can be poor
interpolators prone to unstable swings (as is the experience with corre-
sponding forms of spline). For the PCE, the polynomials are in ξ rather
than x, but I do not believe this will improve their performance. GP em-
ulators effectively use radial basis functions instead of polynomials and so
(in common with some other forms of surrogate including wavelets) tend
to perform better in capturing local structure.

18



• Effi ciency. The PCE approach has some advantages over some of the
surrogate methods in terms of effi ciency. The fact that the mean and
variance of Y are available (approximately) in closed form is an obvious
benefit. Also, when the output is a function, and when the implicit intru-
sive method is feasible, the PCE approach is impressive. GP emulators
also deliver closed form expressions for the mean and variance of Y in
some practically important situations, but to build a GP emulator for a
function requires many compromises. However, it seems in practice the
implicit intrusive method is not used; the effort involved in intrusive meth-
ods presumably outweighs any benefits for practitioners. Another aspect
of effi ciency is the number of simulator runs required to build the surro-
gate, and here my experience is that GP emulation is substantially more
effi cient than other surrogate approaches.

• Quantifying uncertainty. An emulator is not just a surrogate. I use the
term ‘surrogate’to describe a fast approximation to a simulator. In con-
trast, an emulator is a stochastic process providing a full probability dis-
tribution for the simulator output as a function of its inputs. Its mean
function is a surrogate, but the GP is much more than its mean function.
The GP probability distribution for predictions is itself a quantification of
uncertainty (and is quantified in UA or SA as ‘code uncertainty’). The PC
approach involves approximations via the finiteness of the PC expansions
of both input and output. To me, this means additional uncertainty in
every use (e.g. UA, SA or prediction) of that surrogate, and this uncer-
tainty is not quantified. (The only exception is the non-intrusive regression
method which quantifies uncertainty via the residuals, but this quantifi-
cation is wrong because the regression model is wrong for a deterministic
simulator.) The GP leaves no such components of uncertainty unquanti-
fied.

• Flexibility. The distribution of X is fixed in the PC surrogate. If we
change the distribution of X, even with the same germ, the surrogate
must change, and will generally require a new effort to create. This is
not the case with the GP emulator (or other kinds of surrogate). Note,
however, that the GP approach could borrow the idea of expressing X as a
PCE, and thereby create a surrogate whose argument is also ξ rather than
x. There might be value in expressing a non-normal X in terms of normal
Ξ, since one common way of constructing a GP allows UA/UP and SA
to be done in closed form for normally-distributed inputs. The drawbacks
of this would be (a) the fact that the PCE entails an approximation, and
for the reasons given in the previous comment I would be reluctant to do
this, and (b) the fact that the GP would now also require the building of
a new emulator if the distribution of X changed.

I look forward to seeing more discussion of the relative merits of these ap-
proaches, with a view to identifying the strengths and weaknesses of each and
the kinds of situations where one might be preferred over the other.

19



References

Brynjarsdóttir, J. and O’Hagan, A. (2013). Learning about physical
parameters: The importance of model discrepancy. Submitted to SIAM/ASA
Journal of Uncertainty Quantification.
O’Hagan, A. (2012). Probabilistic uncertainty specification: Overview,

elaboration techniques and their application to a mechanistic model of carbon
flux. Environmental Modelling and Software 36, 35—48.

20


