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Abstract

A species sensitivity distribution (SSD) is the probability distribution
of some measure of toxicity to a certain chemical in a population of ani-
mal species. Given data consisting of estimates of toxicity for a number of
species present in the habitat of interest, the SSD is typically estimated by
assuming that these values are a random sample from a lognormal distrib-
ution and estimating the lognormal parameters. The principal de�ciency
of this approach is the assumption that the data are from a random sample
of species. In practice, the species for which data are available are deter-
mined in non-random ways and are likely to be highly non-representative
of the population.

We present a method of inference about SSDs that draws on expert
judgement about which species are likely to be more sensitive to the chosen
chemical. The expert judgements allow us to take some account of non-
representativeness of the available data. We adopt a hierarchical random-
e¤ects model which recognises that species within the same family are
likely to have similar sensitivities, and employ a Bayesian approach to
analysis that allows direct inference about quantiles of the SSD.

Keywords: Bayesian inference; censored data; chlorpyrifos; environ-
mental standards; HC5; hierarchical model; LC50; SSD; toxicology.
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1 Introduction

Environmental quality standards are formulated by national and international
agencies to protect animals and plants from damage by potentially toxic chem-
icals. The analysis developed here is in the context of water quality standards
that seek to control the concentrations of chemicals in aquatic habitats. The
objective of such a standard is to keep the concentration of a given chemical
within a given habitat below a critical level, at which either none or only a small
proportion of species living in that habitat will be harmed.
We consider the community of animal species present in a given aquatic

habitat, and suppose that a suitable toxicological measure has been de�ned
specifying the concentration of a given chemical at which each species would be
harmed. Then the community of species is a population in the statistical sense,
and the distribution of that measure in the population of species is its species
sensitivity distribution (SSD) for the given habitat and chemical. A commonly
used measure in toxicology is the LC50, which is the concentration at which
50% of individuals of a given species will be killed within a given time period.
Although killing 50% of individuals is rather an extreme de�nition of �harm�,
the greater availability of published LC50 values makes it possible to construct a
useful SSD for this measure where it would not be practical for more meaningful
measures of harm. For instance, in the example of Section 3 we use data on the
LC50 for 96-hour exposure to the chemical chlorpyrifos.
Given a suitable SSD, a standard may be set to keep the concentration of

the chemical below a level at which only a small proportion of species will be
harmed. This level is the corresponding quantile of the SSD. For instance,
the HC5 is de�ned as the 5-th percentile of the SSD, and therefore at least
95% of species will be protected if the concentration does not exceed the HC5.
Estimation of the HC5 and other SSD quantiles is discussed by Wagner and
Lokke (1991), Aldenberg and Slob (1993) and Aldenberg and Jaworska (2000).
The standard approach to estimating the SSD (see for example Newman et

al 2000, Posthuma et al 2001, Grist et al 2002) assumes that the distribution
is lognormal and that the available data are derived from a random sample of
species from the statistical population. Then to estimate the SSD it is simply
a matter of estimating the mean and variance of the normal distribution of
log-concentrations. The two assumptions of lognormality and random sampling
are both strong. In practice, it can often be argued that the SSD will be
approximately lognormal, but there are rarely enough data points with which
to test this assumption. This may lead to biased estimation of a relatively
extreme quantile such as the HC5.
The assumption that data are from randomly sampled species is seriously

inappropriate in practice (Forbes and Calow 2002, Maltby et al 2005). The
species for which toxicity data are published will arise from various non-random
mechanisms. First, some species are widely cultivated for laboratory use. These
same species are tested with many di¤erent chemicals, which helps toxicologists
to compare chemicals. They tend to be species that are known to be generally
sensitive to water quality. For an investigator to test a species for which individ-
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uals are not already available entails time-consuming collection from the wild,
and relatively rare species are very unlikely to be tested. Second, species chosen
for testing with a given chemical will tend to be ones that the investigators
expect to be quite sensitive to that chemical.
We present a way to address this problem by use of expert judgements.

We suppose that expert knowledge yields some measure of sensitivity for each
species present in the habitat. We do not assume that this in any way produces
even a perfect ranking of the species, only that there is some correlation between
the expert measure and the true toxicological measure for the di¤erent species.
By �tting a relationship between the expert measure and the toxicological mea-
sure, using the available data, we can predict the toxicological measure for all
the species for which we do not have data. The stronger the correlation be-
tween the two measures, the less uncertainty there will be in these predictions,
but even with a weak association the method can make some allowance for the
non-representativeness of the available data. In Section 2 we present our model
and analysis. We apply this to the 96-hour LC50 SSD for chlorpyrifos in three
di¤erent habitats in Section 3. The results are discussed in Section 4.

2 Model and Bayesian analysis

Suppose that we have data comprising log-concentrations yi, i = 1; 2; : : : ; n, for
n species. We also have expert judgement in the form of a sensitivity measure.
However, it is not practical to expect experts to specify a value for every one of
the thousands of distinct species that may be found in a given habitat. Instead,
we suppose that we have a value xj , j = 1; 2; : : : ; N , for each of N groups, where
in e¤ect the expert is giving a representative sensitivity value to apply to all
the species in the group. Such a group might be a genus, a family, a suborder
or some other taxonomic collection. In general, we refer to such a group as a
taxon; so we have expert assessments of sensitivity for each of N taxa. We let
ti, i = 1; 2; : : : ; n, denote the taxon to which the species with observed value yi
belongs.

2.1 Model

The expert assessments xj could be derived in any way, and be on any appro-
priate scale, but we assume that they are monotonically related to the typical
true toxicological log-concentration for species in taxon j, which we denote by
�j . Formally, our model is hierarchical with the following components.
First, we let

yi s N(�tj ; �
2) :

This assumption implies a lognormal distribution for the concentration (e.g.
LC50) for species within a given taxon. This is weaker than the usual lognor-
mality assumption for the whole SSD, since the expert opinion allows for quite
�exible mixing of these taxa distributions. Notice that the variance �2 accounts
for both measurement error in the data and for variability between species. The
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usual approach to �tting a SSD ignores error in the data, and in e¤ect we will
do so here when we build the SSD from our model. It would be relatively simple
to incorporate measurement error if we had reliable error assessments for the in-
dividual data (or repeat measurements for the same species). In practice, given
good toxicological data its measurement error should be much smaller than the
part of �2 that is due to within-taxon species variation. For simplicity, we do
not separate measurement error and species variability here. Notice also that
we assume a common �2 value for all taxa.
Second, we suppose a linear regression relationship holds between the taxa

means and the expert assessments.

�j s N(�+ �xj ; �2) :

The variance �2 determines how accurately the expert assessments predict the
true mean log-concentration for each taxon. Large �2 will mean that they
have poor predictive value, and will increase the uncertainty in inferences about
the SSD. It would be possible, given enough data, to estimate a non-linear
relationship. It would be simple to extend the model to include other regression
relationships but in practice this will rarely be useful; we retain the linear form
here for simplicity.
Provided the tis are not all distinct, so that there is some replication of taxa

in the data, both �2 and �2 will be identi�able.

2.2 SSD and HC5

We now de�ne the SSD in terms of this model. Just as it is not practical to
suppose that experts can provide sensitivity assessments for all the individual
species, it is not realistic to try to list all the species that might be present in the
given habitat. Instead, we suppose that we have a list of all the taxa represented,
and that these are the N taxa for which the experts have provided assessments.
For taxon j, the proportion of species with true log-concentration values below
some value y is �

�
(y � �j)=�

	
. Now let wj denote a weight to be attached to

taxon j in constructing the SSD satisfying the condition
PN

j=1 wj = 1. In terms
of the SSD, we treat wj as representing the relative abundance of the di¤erent
taxa, but it could also represent their relative importance for environmental
protection. Then the SSD as a function of log-concentration has the cumulative
distribution function

S(y) =
NX
j=1

wj�
�
(y � �j)=�

	
: (1)

The log-HC5 is the solution ŷ5 to the equation

S(ŷ5) = 0:05 (2)

and the HC5 concentration is exp(ŷ5). Any other desired quantile of the SSD
can be de�ned analogously.
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2.3 Inference

In principle it would be possible to analyse the data using classical, frequentist
methods of inference, for instance by plugging maximum likelihood estimates of
the �js and � into (1) and then solving (2). However, because of the generally
small sample size and the highly nonlinear nature of these equations, we can-
not rely on the usual asymptotic theory to give a standard error or con�dence
interval around S(y), ŷ5 or exp(ŷ5). Our preference is for a Bayesian analysis.
The model can readily be analysed using Markov chain Monte Carlo (MCMC)

sampling, which is simple to implement in the WinBUGS package (Spiegelhalter
et al, 2004). The MCMCmethod generates samples of

�
�1; �2; : : : ; �N ; �

2; �; �; �2
�

from the posterior distribution. Given a set of points y(1) < y(2) < : : : < y(m),
we can calculate S(y(t)) for t = 1; 2; : : : ;m, for each MCMC sample, thus ob-
taining a sample from the posterior distribution of S(y(t)). It is then simple to
give a posterior credible interval for each S(y(t)).
To obtain posterior inference about ŷ5, it would be possible to use each

MCMC sample to derive (1) and solve (2) numerically. This would give a
sample from the posterior distribution of ŷ5, from which an estimate and credible
interval can be derived. However, a simpler approach uses the samples of S(y(t))
values. Let p(t) be the proportion of MCMC sample values of S(y(t)) that are
less than 0.05. Then p(t) is the MCMC estimate of

P (S(y(t)) � 0:05 jy) = P (ŷ5 � y(t) jy) :

Therefore the pairs
�
y(t); 1� p(t)

�
estimate the posterior cdf of ŷ5. It is simple

to show that the sequence 1� p(1); 1� p(2); : : : ; 1� p(m) is increasing.
As always in a Bayesian analysis, it is necessary to formulate prior distribu-

tions for the parameters, in this case for �, �, �2 and �2. If there is substantive
prior information about these parameters, it would of course be bene�cial to use
it, particularly in view of the limited data that will usually be available. Prior
information may exist in practice about the magnitude of measurement error
and species variability within taxa, to enable a proper prior distribution to be
formulated for �2. We can generally say which sign � should have, since while
it may be possible that the expert information is not well correlated with true
toxicity measurements it should at least be true that higher expert assessments
of sensitivity equate on average to higher true sensitivity. Where prior informa-
tion is not thought to be su¢ ciently informative to a¤ect the analysis, standard
weak prior distributions may be used as in the following example.

3 Example

3.1 Data

A literature search found n = 17 measurements yi of the 96-hour LC50 for
the organophosphorous insecticide chlorpyrifos relating to freshwater aquatic
species found in the UK. Seventeen biologists employed by the Environment
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Agency or belonging to the Freshwater Biological Association were asked to score
the sensitivity to chlorpyrifos of each of N = 96 taxonomic groups (covering
most species likely to be found in UK freshwater habitats) on a scale from 1
(insensitive) to 8 (highly sensitive). A single weighted average score was derived
from these to provide the expert assessments xj . Lists of taxa were drawn up for
three di¤erent habitats, a fast-�owing stream, a slow-�owing lowland river and
a static pond or ditch. In each case, equal weights wj were assigned. Details of
all these data, including the elicitation of expert judgements and the averaging
process, are given in Grist et al (2005).
Figure 1 plots the observations yi against the corresponding expert assess-

ments xti . Points encircled are for di¤erent species in the same taxon. The line
shows an empirical linear relationship, which has negative slope as expected
but the expert judgements are generally not strongly correlated with the true
toxicity. It is clear that the data do not support any more complex relationship
being �tted. The replication of species within a taxon supports the assumption
of constant �2 in the hierarchical model in which there is separate between-taxa
and within-taxa variability.

Figure 1. Toxicological data plotted against expert assessments

With regard to the representativeness of the sample data, we note that the
experts assessed mean sensitivities of 5.33, 5.18 and 5.00 for the taxa present
in each of the three habitats, whereas their mean assessed sensitivity for the 11
taxa in the data was 4.81. In general, then, in the experts�judgement the data
under-represent the general sensitivity of the population.
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3.2 Initial analysis

To use the standard method to estimate the SSD, we should treat the data as
a random sample of species from the population. This is highly improbable,
and particularly if we note that four of the data points are from the single
taxon Gammaridae, which are shrimps. These are widely used in toxicological
studies, but it is unreasonable to suppose that they make up about a quarter of
all species in UK freshwater habitats. Actually, although all 17 species (from 11
taxa) are found in the slow-�owing river habitat, only 12 (from 7 taxa, including
the Gammaridae) are appropriate to the fast-�owing stream and 11 (9 taxa) to
the static pond. It is usual in eco-toxicology to ignore this distinction and to use
all the available data to construct the SSD, which is then deemed applicable to a
range of habitats. In our example, this is strictly applicable to the slow-�owing
lowland river habitat.
We applied the usual approach, treating the 11 taxa as randomly sampled

from the population, using sample means of the yis for the replicated taxa. Fit-
ting a normal SSD to these log-concentration summary data yields an estimated
N(1:153; 6:372) distribution, with log-HC5 at 1:153� 1:645�

p
6:372 = �2:999.

So the estimated HC5 concentration for the slow-�owing river is exp(�2:999) =
0:050. Treating the 17 data points as a random sample would have given an
estimated HC5 of 0.032, showing the sensitivity of the standard approach to the
assumption of random sampling.
Using our model, we conducted a Bayesian analysis using weak prior infor-

mation on all the parameters, except that we constrained � to be negative. The
posterior distribution of � had expectation �1:5, with 95% probability between
�3:3 and �0:1. Figure 2 shows the posterior mean and 95% credible intervals for
the slow-�owing lowland river SSD, plotted against log-concentration, together
with the N(1:153; 6:372) distribution that was �tted to the taxa means.
Several features of Figure 2 are worth noting. First, there is considerable

uncertainty about the SSD, shown by the wide credible bounds. Comparing the
posterior mean with the conventionally �tted normal distribution based on the
11 taxa means, we see that in general the posterior mean is shifted to the left,
and in particular it will give a lower estimated HC5. This is due to the fact
that the expert assessments of sensitivity for the 11 taxa in the sample were
on average rather lower than for the full set of taxa found in this habitat. The
posterior mean SSD is also rather more spread out, re�ecting the fact that the
expert assessments are more spread for the full set of taxa than for the 11 in
the sample.
The solid line in Figure 3 shows the posterior cumulative distribution func-

tion of the log-HC5. The posterior median HC5 is at exp(�3:84) = 0:021,
which is substantially lower than the 0.05 estimated by the �tted lognormal
SSD. However, the distribution is clearly strongly skewed, and in order to have
90% posterior probability of protecting 95% of species, the concentration would
need to be below exp(�6:33) = 0:002. Hence the implications for environmental
regulation of incorporating the expert knowledge in this analysis are demonstra-
bly substantial.
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Figure 2. SSD for slow-�owing lowland river, based on 17 data points. Solid
line, posterior mean; dotted lines, posterior 95% bounds; dashed line, �tted

normal. Plotted against log-concentration.

Figure 3. Posterior distribution of ŷ5 for the slow-�owing lowland river. Solid
line, based on 17 data points (Section 3.2); dashed line, based on 21 points

(Section 3.3).
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3.3 New data

In order to test the model and to improve estimation of the SSD, four additional
species were tested in the laboratory. These were chosen in the light of the ex-
pert assessments (and reasonable availability), concentrating on species that the
experts judged to be quite highly sensitive, including two species with higher
assessed sensitivities than any in the original data. Three LC50 determinations
provided new data points that could be plotted on Figure 1 at (5:79;�3:35),
(6:04;�0:14) and (6:27;�0:80). The last two points lie close to the �tted re-
gression line in Figure 1. The �rst lies well below it, but is still comfortably
within the posterior predictive 90% credible interval for this observation, based
on the original 17.
The fourth new species produced an incomplete determination of its LC50,

because the experiment did not include su¢ ciently high concentrations. The
result for this species is simply that y21 > ln(10) = 2:30. Its expert assessment
value was 5.21, so this lies a little above the line in Figure 1, but again not
su¢ ciently far from it to cast doubt on the model. It is not di¢ cult to include
this censored data item in the Bayesian analysis.
Repeating the analysis with these 4 new data points we �nd that the pos-

terior mean of � is essentially unchanged, con�rming again that the new data
accord well with the model. Figure 4 shows the estimated SSDs on the log-
concentration scale for the three habitats.
Credible bounds on these lines are a little narrower than in Figure 2, so it

might appear that there is no proven di¤erence between the habitats. However,
the curves are not independent. At each point on the curve there is at least a
60% posterior probability that the SSD for the fast-�owing stream lies above
that for the slow-�owing river, and at least a 70% probability that it lies above
that for the static pond. So there is evidence (based in part on the expert as-
sessments, and the fact that these have a demonstrated correlation with the true
toxicological measurements) that the fast-�owing stream is the most sensitive
of the three habitats.
The new posterior cumulative distribution function for the log-HC5 for the

slow-�owing river is shown as a dashed line in Figure 3. There is now clearly
less uncertainty about ŷ5. The median HC5 value is exp(�3:75) = 0:024, which
is almost the same as with the original 17 data points, but the 10-th percentile
doubles to exp(�5:5) = 0:004.
For further details of this example, see Grist et al (2005).
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Figure 4. Posterior mean SSDs for three habitats, based on 21 data points.
Solid line, fast-�owing stream; dashed line, slow-�owing lowland river; dotted

line, static pond or ditch.

4 Discussion

We have presented a new method of estimating species sensitivity distribu-
tions that incorporates expert judgements of the relative sensitivities of di¤er-
ent species. This approach is able to account for the non-random nature of the
selection of species for which toxicological measurements are available. In the
example which motivated this work, the expert assessments do not correlate
very strongly with the toxicological data, but are nevertheless useful. There
remains substantial uncertainty surrounding the estimated SSD, but a strength
of the approach is that this uncertainty can be quanti�ed clearly. Similarly,
there is substantial uncertainty about low quantiles of the SSD, such as the
HC5, that would be relevant to environmental regulation. Again, however, it is
a strength of the method that this uncertainty is quanti�ed clearly, without the
use of asymptotic approximations, and potentially important skewness in the
distribution of the HC5 is revealed.
In the example, extra data were gathered to test the model. The �t of

these data to the model was good, and they con�rmed the validity of the expert
assessments. Despite the inherent variability in such data and the smallness of
the original sample, the posterior inferences remained stable after adding the
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new data. In contrast, the conventional method of �tting a lognormal SSD would
have produced appreciably di¤erent answers before and after incorporating these
data.
It is not straightforward to acquire the expert judgements that were used in

this analysis, but the added value of these assessments is substantial in view of
the very limited toxicological data that are generally available about any given
chemical.
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