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Abstract
The result of a measurement, including the expression of uncertainty in the measurement,
should represent a carefully considered opinion based on the metrologist’s experience and
expertise, as well as on the data and other information sources. This is the position of the Guide
to the expression of uncertainty in measurement (GUM), where the requirement for such
judgment is clear in the case of Type B (non-statistical) evaluation. However, when making
Type A evaluations, involving statistical analysis of data, the GUM and related GUM
documents implicitly consider the data to be the only relevant information. This perspective is
unfortunate, and arguably unscientific, when, as is frequently the case, the metrologist could
bring other relevant information to bear. Bayesian statistical methods allow the use of prior
information in addition to the data in Type A evaluation and have been advocated by several
authors. However, prior information is in principle subjective and, as in other fields, there is
some resistance in the metrology community at large to embrace Bayesian methods using
meaningful, subjective prior probability distributions. We address our paper to metrologists in
measurement and calibration laboratories whose workload is such that new techniques will only
be adopted if they have proven advantages and are straightforward to apply routinely. We
present two prior distributions for use in the most basic of all Type A evaluations, where the
data comprise a sample of indications assumed to be normally distributed. These distributions
represent prior information about the observation error variance in a simple form that is readily
justified in practice. We show the gains to be achieved by using these prior distributions, both in
the single Type A evaluation and in a more complex measurement model, and present simple
guidance for verifying their validity.

Keywords: Type A uncertainty evaluation, measurement uncertainty, GUM, Bayesian methods,
prior information, characteristic uncertainty
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1. Introduction

1.1. The guide to the expression of uncertainty in
measurement

Two components, the estimate of a quantity and the associated
measurement uncertainty, together constitute a common way
of reporting a measurement result [1].

The Joint Committee for Guides in Metrology (JCGM)
maintains and promotes the Guide to the expression of uncer-
tainty in measurement (GUM) [2]. The GUM (JCGM 100) has
for many years been the authoritative guide concerned with the
evaluation of measurement uncertainty. The GUM is one part
of a suite of documents including [3–6] that use the concept of
standard uncertainty, defined [2, clause 2.3.1] as the ‘uncer-
tainty of the result of a measurement expressed as a standard
deviation’.

The GUM treats measurement as in general involving a
measurement model relating the measurand Y (taken as a uni-
variate quantity here) to input quantities Xi:

Y= f(X1, . . . ,XN).

Knowledge of Y is determined given f and estimates xi of the
Xi, associated standard uncertainties u(xi) and possibly covari-
ances between the Xi. The process of determining the estimate
and standard uncertainty of a model input is itself a measure-
ment, and in the context of such a measurement we will refer
to the input quantity as the measurand.

The GUM gives guidance on providing estimates xi and on
Type A and Type B evaluation of the Xi. A Type A evaluation
of Xi uses statistical methods such as taking the mean of a set
of indications obtained independently under the same meas-
urement conditions, and using the standard error of the mean
as u(xi). A Type B evaluation of Xi uses a knowledge-based
probability distribution for an input quantity, taking the stand-
ard deviation of the distribution as u(xi).

The evaluation of Xi occurs prior to employing the meas-
urement model in which Xi is to be used as an input to a
measurement of Y. Now Xi is no longer the subject of the
measurement and, in the context of that measurement, Y is the
measurand and Xi is just an input.

Degrees of freedom are assigned in the GUM to inputs as
part of Type A and Type B evaluations. A probability distri-
bution is characterized by the measurement result as a normal
or a shifted and scaled Student’s t distribution from which a
confidence interval for the measurand is obtained.

Confidence intervals are expressed in terms of expanded
uncertainty. So, a typical measurement result will involve an
estimate, a standard uncertainty and an expanded uncertainty
for 95 % coverage.

Although the GUM has huge influence in metrology, with
measurement uncertainty being routinely evaluated according
to the above procedure, several key components of that proced-
ure have been challenged. We subsequently set out alternative
elements that will be adopted in this article.

1.2. Two statistical paradigms

A long-running controversy in metrology concerns the under-
lying statistical methodology employed for the expression of
uncertainty in measurement. The two principal paradigms in
statistics, termed ‘frequentist’ and ‘Bayesian’, express uncer-
tainty in different ways and using different formal definitions
of probability.

• Frequentist methods are based on the frequency definition of
probability, where the probability of an event is defined to be
the frequency with which that event occurs in the long run,
over many repetitions. The Type A procedures given in the
GUM are based on frequentist statistical theory, and accord-
ingly the resulting standard uncertainties quantify how vari-
able the estimate of a measurand will be over many repeti-
tions of the measurement process.

• Bayesian methods employ a subjective definition of probab-
ility, whereby the probability of an event is a subjective judg-
ment representing a person’s rational degree of belief that it
will occur. Type B evaluation in the GUM is a subjective
judgment and the resulting standard uncertainty quantifies
the metrologist’s knowledge of the measurand.

When Type A and Type B evaluations are combined,
the GUM mixes frequentist and Bayesian concepts and
has received considerable criticism for doing so (references
include [7–9]). We believe that the only logical, coherent solu-
tion is to adopt the Bayesian paradigm consistently, includ-
ing making Type A evaluations using Bayesian methods.
Such a practice accords with the suggestion in the GUM
[2, clause E.3.5] that disparate standard uncertainties can be
combined because ultimately all expressions of uncertainty
must be the metrologist’s judgment and opinion, and with the
use of Bayesian methods in JCGM 101.

1.3. Bayesian methods

From the Bayesian perspective, uncertainty in any quantity
is expressed using probabilities, and a probability distribu-
tion represents a complete description of that uncertainty. A
Bayesian Type A evaluation for a quantity X will therefore
result in a probability distribution for X. It should represent
the metrologist’s considered judgments about X based on all
available information. In Bayesian analysis, a distinction is
made between the data, typically comprising the sample of
experimental determinations of X for a Type A evaluation,
and the prior information, comprising all other knowledge the
metrologist may have, including experience with the measure-
ment procedure and with quantities such as X in the past. The
information in the data is represented through the same stat-
istical model as would be used in frequentist Type A eval-
uation, but the Bayesian analysis also recognizes the prior
information represented as a prior distribution for X. The two
sources of knowledge are synthesized in a natural way using
Bayes’ theorem. The result is a probability distribution for X,
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the posterior distribution, representing the sum of the metro-
logist’s knowledge about X.

An important potential advantage of Bayesian methods
in metrology is the ability to make use of more informa-
tion. The addition of prior knowledge will typically result in
less uncertainty regarding X than would have been obtained
through use of the data alone. It is worth noting that day-
to-day measurements in practising laboratories often involve
Type A evaluations with very few experimental determina-
tions; sample sizes as low as three or four are commonplace. In
this context, the addition of prior information can offer valu-
able improvements.

Where a measurand is expressed as a function of various
input quantities through a measurement model, these quant-
ities will all have probability distributions in a Bayesian ana-
lysis. An input that is subject to Type A evaluation will have a
posterior distribution. One that is subject to Type B evaluation
will have a distribution expressed directly as the metrologist’s
judgment. Distributions for the inputs to a measurement model
imply a probability distribution for the measurand, which may
for instance be computed using the Monte Carlo method of
JCGM 101 [3]. Probabilities and probability distributions are
always to be understood as representing the considered opin-
ion and judgment of the metrologist.

Scientists whose training in statistics has been confined
to the more common frequentist concepts and methods are
not accustomed to applying a Bayesian treatment. Further,
although Bayes’ theorem is a standard statistical tool, it
involves probability operations that are unfamiliar to many
practitioners. Bayesian methods are therefore often regarded
as more complex and more mathematical than frequentist
methods, but this is an unfair perception. One purpose of this
article is to demonstrate that Bayesian methods can be equally
straightforward to apply in practice.

1.4. Prior information

The potential advantages of using Bayesian methods in met-
rology are two-fold. First, adopting the Bayesian framework
provides a rigorous and legitimate way to combine Type A and
Type B evaluations. Second, the incorporation of the metrolo-
gist’s prior knowledge in Type A evaluation may strengthen
the measurement and allow a more realistic uncertainty to be
reported from a given sample of data.

Bayesian methods require the specification of a prior dis-
tribution that represents the metrologist’s judgment about the
likely values of a quantity before seeing the data that will be
used to obtain the measurement result, based on background
knowledge and experience. As such, it is necessarily subject-
ive; different metrologists in the same context might express
different prior judgments, although it is the prior knowledge
and professional judgment of the metrologist who is respons-
ible for themeasurement result that matters. Bayesianmethods
are widely used in almost all areas where statistical analysis is
employed, but they often face resistance because of the sub-
jective (individual) nature of the prior distribution. In metro-
logy, the use of a prior distribution may be viewed, we believe

unfairly, as compromising or undermining the objectivity of
the data.

To address concerns about subjectivity, some practition-
ers of Bayesian statistics use so-called noninformative prior
(NIP) distributions that are supposed to be objective repres-
entations of prior ignorance. In metrology, the standard devi-
ation of the prior distribution expresses the strength of prior
information. The larger is the standard deviation, the weaker
is the prior information. A NIP distribution should therefore
have a standard deviation that is so large as to be effectively
infinite. Using such a prior distribution, it is claimed, should
gain the first benefits of Bayesian methods, namely a rigor-
ous framework for combining Type A and Type B evaluations,
without contaminating the data with the metrologist’s subject-
ive judgments.

Although some practitioners might consider this approach
attractive, it is controversial for several reasons:

• Numerous formulations have been proposed for represent-
ing the notion of prior ignorance, and in any given situation
they may give different ‘noninformative’ distributions that
lead to quite different posterior distributions. There is no
unique, objective distribution to represent a state of com-
plete or near ignorance regarding a measurand;

• In practice, there is always some prior knowledge. For
example, without some idea of likely values for a measur-
and it is not possible to devise or utilize a suitable measure-
ment procedure, and there is always prior knowledge about
the error characteristics of any measuring system;

• Claiming prior ignorance when there is in fact some prior
information implies failing to use all available information
regarding the measurand. That may be seen as unscientific,
and even a derogation of duty.

Ultimately, the notion that subjectivity is unacceptable in
science is widespread but demonstrably false. Subjective judg-
ment is a feature of all scientific activity: examples include for-
mulating hypotheses, buildingmodels, designing experiments,
choosing how to analyse data and interpreting data. Good sci-
ence involves judgments and opinions being formed carefully
and rigorously, scientifically, and being open to challenge in
the forum of scientific debate and peer review.

It is our opinion, therefore, that where genuine prior know-
ledge exists it should be acknowledged and used, in the form
of an informative prior distribution, and not denied by sub-
stituting a ‘noninformative’ distribution. An informative prior
distribution will often allow the reporting of a smaller meas-
urement uncertainty and a correspondingly narrower 95 %
coverage interval. However, these benefits depend on the prior
distribution being realistic.

A 95 % interval for an unknown quantity should contain
the true value of that quantity with probability 0.95. The prac-
tical meaning of this statement in metrology is that over a long
period of time, when ametrologist constructs many 95% inter-
vals for many measurands, then approximately 95 % of those
intervals should contain the true values of those measurands.
This statement will be true when the intervals are constructed
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as confidence intervals, using the frequentist approach to stat-
istics, provided that the statistical model used to construct the
intervals is valid. It is shown in appendix A that it is also true
for Bayesian intervals, but only on the additional condition
that the prior distributions for those measurands are realistic.
That is, the truemeasurands should behave as if they have been
sampled from their prior distributions. If, for instance, the true
values of the measurands were mostly to lie in the upper tails
of the metrologist’s prior distributions, then those prior distri-
butions would not be realistic. The metrologist’s prior judg-
ments would consistently underestimate the measurands, and
we would not expect 95 % of the resulting intervals to contain
the true measurand values.

1.5. Target audience

The use of Bayesian methods in metrology, including the
use of informative prior distributions, has been advocated and
adopted in many publications such as [10–13]. Nevertheless,
applications have largely been confined to researchers, for
instance, in national metrology institutes, rather than practi-
tioners, and have made little impact on measurement practice
in the community at large.

The target audience of this paper is metrologists in meas-
urement and calibration laboratories whose workload (and fin-
ancial model) is such that new techniques will, quite legitim-
ately, only be adopted if they have proven advantages and are
simple to apply routinely. The paper is directed at metrolo-
gists who wish to use their knowledge of their measurement to
reduce in a straightforward way the uncertainty in their meas-
urement results.

We focus on Type A evaluation from a sample of normally
distributed indications, because for our target audience this is
by far the most widely used technique for the expression of
uncertainty.

Somemetrologists might consider that adopting a Bayesian
approach means they must discard the methodologies they
have developed according to the GUM. They can be reassured
that this is not the case: Type B evaluation is already Bayesian,
and Type A evaluation in the GUM is in many cases equi-
valent to a Bayesian approach with a NIP. In particular, for
the Type A evaluation from a normally distributed sample, the
GUM [2] approach can be viewed as providing a Student’s
t distribution equivalent to the Bayesian posterior, while the
approach of JCGM101 [3] can be viewed as sampling from the
Bayesian posterior, each employing the same choice of NIP for
the measurand.

However, in a Bayesian approach we are not restricted
to using a NIP. In implementing such an approach, we can
choose priors that are appropriate for the situation, in par-
ticular, those encoding useful information about the observa-
tion error variance that the metrologist may know, for instance
from published performance data of the measuring system or
from repeatability of previous experiments. There is a class of
priors that encode precisely this type of information but lead
to exactly the same class of posterior distributions (Student’s
t distributions) with which the GUM already deals. Bayes

gives this added flexibility at no computational overhead, with
the advantage that in many circumstances the reported uncer-
tainty can be smaller because of the better use of informa-
tion. We emphasize that a Bayesian treatment is more flexible
and so better able to encode information, leading to smaller
uncertainties.

1.6. Desiderata for informative prior distributions in metrology

We have argued that prior information can and should be used
in metrology to enhance the specific data, and indeed that
this is one of the important benefits of adopting a Bayesian
paradigm. However, we have also seen that (a) metrologists
have understandable concerns about the use of subjective prior
information, (b) the performance of coverage intervals may
be poor if the prior distribution is not valid, and (c) Bayesian
methods are generally seen to be complex and mathemat-
ically or computationally demanding. These issues must be
addressed if informative prior distributions are to find wide-
spread practical application in metrology.

The following list of desirable criteria has been formu-
lated specifically with our target audience in mind. While
they may be seen as overly restrictive for metrologists wish-
ing to embrace Bayesian methods in research and complex
measurement problems, they also relate to aspects of research
reproducibility [14].

• Justification. The prior distribution should be based on judg-
ments that are open to scrutiny and justified by reference to
prior information and experience.

• Simplicity. The Bayesian procedure that derives the distri-
bution of the measurand and summary information such as
standard uncertainty [2] should be documented in a peer-
reviewed source. It should be simple to use and to be replic-
ated.

• Benefit. The advantages of incorporating prior information,
for instance, in terms of the use of domain knowledge (in
addition to the data) and a reduced measurement uncer-
tainty, should be sufficient to offset any time or resource
implications in adopting the Bayesian procedure.

• Verification.The consistency of the prior distribution and the
data should be capable of verification.

1.7. Outline of the paper

Section 2 considers the most widely used case of Type A eval-
uation, in which the data comprise a sample of independent
determinations with normally distributed observation errors.
We consider two simple informative prior distributions that
represent the kind of prior information that a metrologist will
typically have, from previous experience and knowledge of
the measurement procedure, regarding the magnitude of the
observation errors (Justification). We provide simple formulae
for deriving the posterior distribution and relevant summar-
ies (Simplicity). We show how the addition of this information
materially reduces uncertainty in the measurand (Benefit) and
we also show how the validity of the prior information can be
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verified in practice (Verification). Our simple priors are pro-
posed purely for this specific Type A evaluation. Since this
evaluation is by far the most widely used model in laborator-
ies around the world, the use of these simple tools to improve
measurement results for this model has the potential to have a
profound influence on grassroots metrology.

Section 3 considers the case where a measurement model
has multiple inputs, in some or all of which it is possible to
apply the suggested informative priors. The approach is illus-
trated in a numerical example, using a model with six inputs.
The reduction in the standard uncertainty of the measurand
achieved through using the two simple informative prior dis-
tributions is examined, and the validity of the prior informa-
tion is tested. A second numerical example of a measurement
model is also considered in which there are two input quant-
ities, with Type A evaluation used for one and Type B for the
other. Although it is very simple, the model is indicative of
models used by many laboratories.

Section 4 summarizes the findings and conclusions of this
article.

2. Type A evaluation

Although there are many forms of Type A uncertainty eval-
uation such as involving several quantities measured simul-
taneously and cases involving complex variables, the canon-
ical and commonest example of Type A uncertainty evaluation
in metrology is as follows. We have a sample x= [x1, . . . ,xn]
of n (real) observations, assumed to be distributed independ-
ently as N(µ,σ2), where µ is the (unknown) population mean,
while σ2 is the (unknown) population variance. In section 3,
we will consider measurement models in which a measurand
is expressed in terms of two or more input quantities but here,
in the context of its Type A evaluation or measurement, we
refer to µ as the measurand.

We denote the sample mean by x̄ and the sample variance
by

s2 =
1

n− 1

n∑
i=1

(xi− x̄)2 .

2.1. Informative and NIP distributions

The standard non-Bayesian Type A evaluation for this prob-
lem, given in the GUM, estimates µ by x̄ and expresses
uncertainty through a standard uncertainty u(x̄) and expanded
uncertainty U(x̄) given by

u(x̄) =
s√
n
, U(x̄) = k(n− 1)

s√
n
,

where k(d) is the 97.5 % quantile of the Student’s t distribution
with d degrees of freedom. (We use d to denote degrees of
freedom rather than the more conventional ν because of the
possible confusion with v used here for variance.)

JCGM 101 [3] gives a Bayesian Type A evaluation for this
problem in which the posterior distribution of µ is a scaled and
shifted t distribution with mean x̄, standard deviation

u(µ) =

√
n− 1
n− 3

s√
n

and degrees of freedom n− 1.
Part of the controversy over frequentist versus Bayesian

inference in metrology concerns the difference between the
two standard uncertainties. The Bayesian u(µ) is larger than
the frequentist u(x̄): the former is

√
(n− 1)/(n− 3) times the

latter. However, the interval x̄± k(n− 1)s/
√
n is a 95 % cov-

erage interval for µ in both analyses.
The posterior distribution of µ given therein derives from a

NIP distribution and is commonly used to represent no prior
knowledge about either µ or σ2. See appendix B for details of
this distribution.

The metrologist may of course have, on the basis of experi-
ence or judgment, subjective prior knowledge about the meas-
urand, which can be formally incorporated into the analysis (as
for instance in [15, 16]), but it will frequently be thought con-
troversial, inappropriate or even inadmissible to influence the
estimated value of the measurand in this way. However, rel-
atively uncontroversial prior information about σ2 will very
often exist. The incorporation of such information in the Type
A evaluation through the use of an informative prior distribu-
tion should be reflected in reduced posterior uncertainty. Spe-
cifically, a reduction in standard uncertainty, would allow the
metrologist to report a stronger measurement result.

Prior information to the metrologist often relates to the
observation error variance obtained with a well-characterized
measuring system, that is, a system possessing stated meas-
urement repeatability (measurement precision under a set of
repeatable conditions of measurement [1, definition 2.21]). It
is not so much a question of location of the mean of a set
of observations, but of their standard deviation or some other
measure of spread that is most relevant. A measuring sys-
tem, such as a force-measuring machine, may have consistent
repeatability over a certain force interval and be required to be
capable of measuring any force within that interval. Presented
with an unknown force, wemay havemeagre knowledge of the
force itself but reasonable prior knowledge based on routine
use of the machine of the standard deviation of the observa-
tions made of that force.

The GUM recognizes such a situation, stating in [2,
clause 4.2.4]:

‘For a well-characterized measurement under
statistical control, a combined or pooled estim-
ate of variance s2p (or a pooled experimental
standard deviation sp) that characterizes the
measurement may be available. In such cases,
when the value of a measurand q is determ-
ined from n independent observations [qk, k=
1, . . . ,n], the experimental variance of the arith-
metic mean q̄ of the observations is estimated
better by s2p/n than by s2(qk)/n and the stand-
ard uncertainty is u= sp/

√
n . . .’

However, in frequentist statistics, there are just two
extremes regarding a parameter: either it is completely
unknown or it is known. GUM clause 4.2.4 is not Bayesian,
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just an example of the latter. It is also suspect because it treats
the variance as being known exactly (with the added assump-
tion that that value, supposedly from previous applications of
the same measurement process, applies exactly to the current
application). The frequentist must ignore either the evidence
from the data or else all prior knowledge. Our approach is
Bayesian because it uses both, recognizing that the data are
relevant because there is prior uncertainty about the variance.

The family of scaled inverse-chi-squared (ICS) distribu-
tions we present in section 2.2 is a standard tool for express-
ing uncertainty about a variance in Bayesian statistics gener-
ally, and has been presented for use in the particular context of
Type A evaluation in [17]. The mildly informative prior (MIP)
and strongly informative prior (SIP) distributions we propose
are specific instances of the general ICS family, chosen with
our target audience in mind to make accessing the benefits
of prior information as simple as possible. The noninform-
ative NIP prior distribution is also identified in appendix B
as a limiting form of ICS distribution. We present clear and
simple criteria for selecting MIP or SIP that we believe will be
more straightforward to employ in a busy laboratory than the
formulation in [17]. Furthermore, the reality checks we pro-
pose in section 2.6 to meet our Verification desideratum are
possible only because restricting the choice of prior in prac-
tice to either MIP or SIP allows the necessary accumulation
of evidence.

2.2. Simple informative prior distributions

In accordance with section 2.1, we now suppose that the met-
rologist can specify prior information about the error vari-
ance σ2, but that the prior distribution for µ is to be nonin-
formative, reflecting no prior knowledge about the value of
the measurand. We recognize that Bayesian statistical meth-
ods are unfamiliar to most metrologists and can be complex
to apply. For any such method to be adopted in regular metro-
logical practice, it must satisfy the desirable criteria listed in
section 1.6.

In principle, to identify a prior distribution that accurately
represents the metrologist’s prior knowledge is a non-trivial
task [18]. In practice, however, prior information regarding
σ2 can generally be represented adequately as in section 2.1
by a member of the ICS family of distributions. A consider-
able advantage of the choice of the scaled ICS distribution
for σ2 is that it retains the familiar Student’s t distribution,
as in the GUM [2], as the posterior for µ (see [16, 17], for
instance). In the interests of providing simple, readily imple-
mented procedures, we recommend the following two specific
members of that family, representing different strengths of
prior knowledge.

• The MIP distribution. The weaker of the two distributions
is denoted by MIP(v) and is recommended when the metro-
logist can be confident that σ2 will lie within a factor of 9
either side of an estimate v, that is, between v/9 and 9v.

• The SIP distribution. The stronger of the two distributions
is denoted by SIP(v) and is recommended when the metro-
logist can be confident that σ2 will lie within a factor of 3
either side of an estimate v, that is, between v/3 and 3v.

Details of the ICS distributions, and of the MIP and SIP
distributions in particular, are given in appendix B. In each
case, the use of the distribution requires only a prior estimate v
of σ2. The choice of distribution, MIP or SIP, expresses the
strength of prior knowledge, through a judgment of confidence
that σ2 will lie within a factor 9 or 3, respectively, either side of
v. Specifically, the metrologist should feel at least 95% certain
that σ2 will be in that interval.

Appendix B shows that these prior distributions are easy to
specify and to justify in practice, meeting the Justification cri-
terion. Furthermore, they meet the Simplicity criterion because
they have the property that estimates and uncertainty measures
can be derived in closed form as simple formulae.

The choice of prior distributions for use in metrology has
been considered by several authors; see, for instance [16, 19,
20]. In particular, in [20] various applications are presented in
which prior distributions are derived from historical informa-
tion such as previous proficiency tests or interlaboratory com-
parisons. It is shown how these applications profit from the
use of such knowledge. In contrast, we assume here that such
knowledge is unavailable or that to use it would likely be bey-
ond the capabilities of manymetrologists in calibration or test-
ing laboratories. All that is asked is that the metrologist makes
a judgment of the factor within which the variance of themeas-
urand is expected to lie. That judgment calls on some know-
ledge of measurement precision [21, definition 3.3.4] for the
task in hand but does not entail anything more sophisticated
than that.

The MIP distribution represents weak prior knowledge
about a variance, and we suggest that at least this degree of
prior knowledge will be justifiable in many problems in metro-
logy. In a good proportion of these problems, the more inform-
ative SIP distribution should also be justifiable. Instances
of the availability of prior information where these distribu-
tions could be applicable are in dimensional metrology [22],
sludge, biowaste and soil sampling [23], and manufacturing
metrology [24].

Other informative priors have been used for Type A uncer-
tainty evaluation, but fail to satisfy our criteria. Cox and
Shirono [25] use a Jeffreys’ prior truncated above and below.
Truncating the Jeffreys’ prior either involves an arbitrary
choice of truncation points or else explicit judgments about
where to place them, knowing that if the resulting prior is to
have any informative value the answer will depend on those
points. Such choices will be challenging to justify in practice,
and the truncated distribution does not yield simple formulae
for the estimate or uncertainty measures. Van der Veen [26]
considers some weakly informative priors for various forms of
Type A uncertainty evaluation, but there are again no simple
formulae for the estimate or measures of uncertainty. Instead,
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calculations need to be carried out using Markov chain Monte
Carlo methods.

In a documentary standard concerned with sampling plans
[27], the level of prior information is specified on an ordinal
scale ‘Trust’, by choosing between low, mid and high. Trust
level low is used if no prior experience with populations sub-
mitted for inspection exists, high if there is strong evidence of
good performance, and mid if there is weak evidence of good
performance. Beta distributions (without motivation) are used
as priors with the two parameters a and b of those distributions
depending on the Trust level. A rectangular distribution (with
a= b= 1) is used for Trust level low. Advice is given on the
choice of parameter values for Trust levels mid and high (for
which choosing a⩽ 1 and b⩾ 1 but not a= b= 1) results in
a strictly decreasing beta curve. Although used in a different
context, the Trust levels low, medium and high, respectively,
can be contrasted with the NIP, MIP and SIP priors used here.

2.3. The effect of additional information

A proposed new method should of course also offer some tan-
gible advantage over an existing method (Benefit), which in
this case should be an expected reduction in uncertainty meas-
ures. The existing method [3] is Bayesian analysis with NIP
distribution in section 2.1. We will compare uncertainty meas-
ures obtained using the NIP distribution with those obtained
with a MIP or SIP distribution.

The most widely used measure of uncertainty in metrology
is the standard uncertainty, defined in the GUM [2] as a stand-
ard deviation. However, comparison on the basis of a standard
deviation is problematic because (a) it has conceptually differ-
ent interpretations in the frequentist and Bayesian paradigms,
and (b) it can be infinite, being inapplicable for samples of size
less than four.

To compare uncertainties and coverage intervals for the pri-
ors considered, we use characteristic uncertainty c(µ) [28],
defined as one quarter of the length of a 95 % coverage
interval. Thus, c(µ) expresses uncertainty in a more direct
and meaningful way than a standard deviation. Furthermore,
unlike standard deviation, the characteristic uncertainty exists
for any probability distribution. Moreover, it is appropriate
to report characteristic uncertainty in our numerical examples
below since considerations of interpretation of coverage inter-
vals according to the frequentist and Bayesian paradigms are
totally avoided. These and other arguments in favour of char-
acteristic uncertainty as a preferred uncertainty measure are
presented in [28]. Metrologists who nevertheless prefer to
work with and report standard uncertainties will find appro-
priate details in appendix B.4. Conclusions presented here in
terms of characteristic uncertainty will hold equally strongly
for standard uncertainties.

Formally, the characteristic uncertainty is defined by ref-
erence to the median estimate, which is advocated by [28] as
a more meaningful estimate of a measurand than the mean.
However, in this work we will mostly be concerned with Stu-
dent’s t distributions, for which the mean and median are
identical.

Table 1. Posterior degrees of freedom d∗ and variance estimates v∗

for three prior distributions.

Prior d∗ v∗

NIP n− 1 s2

MIP(v) n+ 2
3v+(n− 1)s2

n+ 2

SIP(v) n+ 7
8v+(n− 1)s2

n+ 7

Appendix B.3 shows that for all three prior distributions
the posterior distribution of µ is a scaled and shifted Student’s
t distribution with mean x̄. Hence all three distributions yield
the same estimate of µ,

m(µ) = x̄ .

However, they yield different characteristic uncertainties

c(µ) =
k(d∗)
2

√
v∗

n
. (1)

with the values of d∗ and v∗ given in table 1.
In effect, the prior information in the MIP and SIP distri-

butions is equivalent to a pseudo-sample of 4 or 9 additional
observations, respectively, in each case with a pseudo-sample
variance of v. In the d∗ column of table 1, we see that the
additional pseudo-sample size increases the sample degrees of
freedom n− 1 by 3 or 8, respectively. In the v∗ column, the
pseudo-sample variance v is combined with the sample vari-
ance s2 in the natural way to produce the revised estimate v∗.

The effect of these informative prior distributions on the
characteristic uncertainty is seen primarily in the posterior
degrees of freedom d∗. Increasing d∗ reduces the factor k(d∗).
Moving from NIP to MIP to SIP produces systematic reduc-
tions in these uncertainty factors.

The effect of the prior information on the v∗ term is to pull
the sample estimate s2 of σ2 towards the prior estimate v. The
pull is stronger with the more informative SIP than with MIP.
If s2 is larger than v, then v∗ will be smaller than s2, again redu-
cing the characteristic uncertainty. Conversely, if s2 is smal-
ler than v, the uncertainty will be increased. However, v∗ is
expected to be neither larger nor smaller than s2; they are both
estimates of σ2. Overall, therefore, the informative prior dis-
tributions will reduce uncertainty, primarily by increasing the
posterior degrees of freedom d∗.

2.4. A basic algorithm

The procedure for conducting a Type A evaluation with a MIP
or SIP prior distribution is simply set out in the following
algorithm. In this algorithm, the reporting stage follows [28]
with (a) a summary report comprising the median estimate and
characteristic uncertainty, and (b) a full report giving the dis-
tribution. Algorithms for reporting based on standard uncer-
tainties are given in appendix B.4.
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Algorithm 1. Type A evaluation from a normal sample with MIP
or SIP prior information.

Begin:
Given:

• A sample x1, . . . ,xn of n indications, normally distributed
with mean µ the quantity of interest and unknown
variance σ2;

• A prior estimate v of σ2 such that the metrologist can be
confident that
(MIP) σ2 will lie between v/9 and 9v, or
(SIP) σ2 will lie between v/3 and 3v

Compute:
1. Form sample mean x̄=

∑n
1 x1/n

2. Form sample sum of squares S=
∑n

i (xi− x̄)2

3. Set prior degrees of freedom
(MIP) d= 3
(SIP) d= 8

4. Form posterior degrees of freedom d∗ = n+ d− 1
5. Form posterior variance estimate v∗ = (dv+ S)/d∗

6. Form characteristic uncertainty c(µ) = k(d∗)
√
v∗/(2

√
n)

Report:
(a) The measured value (median estimate) of µ is x̄ with

characteristic uncertainty c(µ)
(b) The quantity µ has a t distribution with mean x̄, scale

parameter v∗/n and degrees of freedom d∗

End

2.5. Advantages of the proposed prior distributions

To illustrate the advantages of the informative MIP and SIP
prior distributions over the noninformative NIP distribution,
as well as to identify the price to be paid for those advantages,
we present a simple example in the case of one normal sample.
We contrast the characteristic uncertainties and coverage prob-
abilities from the noninformative NIP prior distribution, with
those from the informative MIP and SIP distributions. We set
the sample size to n= 5 and for MIP and SIP the prior estimate
of the variance to v= 1.

Figure 1 (left) shows the expected characteristic uncertainty
as a function of σ using the NIP, MIP and SIP prior distribu-
tions. The expected characteristic uncertainty using the NIP
distribution, which is equivalent to the standard frequentist
analysis of the GUM, is linear in σ, while the values for MIP
and SIP, computed by aMonte Carlo method with 106 samples
as set out in appendix C.1, show the influence of the prior
information.

For the SIP prior distribution, the metrologist’s judgment is
that σ2 is highly likely to lie within a factor 3 either side of
the prior estimate v= 1, and hence that σ is highly likely to
be in the interval 3−1/2 = 0.577 to 31/2 = 1.732. This inter-
val is shown as the green horizontal bar in figure 1. The prior
distribution will yield a characteristic uncertainty that is larger
on average than the standard GUM proposal (the NIP line in
figure 1) when σ is smaller than themetrologist expected. Con-
versely it will give a lower characteristic uncertainty when σ
is as the metrologist expected or larger. Overall, if σ2 were
indeed drawn randomly according to the metrologist’s SIP

prior distribution then with probability 0.9 this prior distribu-
tion would give a lower characteristic uncertainty than the NIP
distribution; the median percentage reduction (the reduction
achieved or exceeded with probability 0.5) would be 19.1 %.

Turning to the weaker MIP prior distribution, the metro-
logist’s judgment in this case is that σ will lie in the inter-
val 1/3 to 3 with high probability. This interval is shown as the
red horizontal bar in figure 1. We see a similar pattern to that
observed with the SIP distribution. Overall, if σ2 were indeed
drawn randomly according to the metrologist’s MIP prior dis-
tribution, this prior distribution would give a lower character-
istic uncertainty than the NIP distribution with probability 0.8,
and the median percentage reduction would be 15.9 %.

These gains relative to the standard GUM formulation are
achieved conditional on the metrologist’s prior information
being valid, in the sense that over many applications the true
values of the underlying error variance σ2 behave as if drawn
randomly from the stated prior distribution. To assess the con-
sequences of the prior information not being valid in this sense,
we consider the coverage of the implied 95 % coverage inter-
val m(µ)± 2c(µ). Figure 1 (right) shows the coverage prob-
ability as a function of σ for the three priors, and again the
most likely ranges for σ according to the MIP and SIP prior
distributions are shown.

The coverage probability is identically 0.95 (95 %) by con-
struction for the NIP distribution, for all σ2. For both inform-
ative priors, the expected coverage is also 95 % if the prior
distribution is valid. However, figure 1 (right) shows the con-
sequence if the metrologist misjudges the likely values of σ2.
The coverage in both cases is a decreasing function of σ and
for small values of σ approaches 100 %. Therefore, if the
true error variance is appreciably smaller than the metrologist
expects, then the informative prior will result in a conservative
evaluation of uncertainty. That is, the metrologist will report
a characteristic uncertainty implying a 95 % coverage interval
that in fact is almost certain to contain the true value of µ.

Conversely, though, if the metrologist underestimates the
likely value of σ2, the resulting characteristic uncertainty will
also be underestimated and the implied 95 % coverage inter-
val will have an actual coverage probability appreciably below
95 %. If, for instance, despite specifying the SIP(1) prior dis-
tribution, and hence that the metrologist is confident that σ
will not exceed 1.732, the true value of σ is 3 or more, then
the coverage probability will be less than 80 %. According
to the metrologist’s specified SIP(1) distribution, σ ⩾ 3 has
probability just 0.0012, so the risk of such poor coverage is
extremely low and would be of no concern. It becomes a con-
cern only if the metrologist has mis-specified the prior dis-
tribution by seriously underestimating σ2, or by over-stating
their confidence by using the SIP(1) prior when only MIP(1)
is justified. Just as the gains in terms of reduced characteristic
uncertainty are greater with the stronger SIP prior distribution,
the consequences of mis-specifying the prior information, and
in particular of under-estimating σ2, are greater. It is noted that
in many papers the consequences of mis-specifying the prior
information are overlooked.

This is why we have emphasized that prior distributions
must represent honest and justifiable prior knowledge.
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Figure 1. Expected characteristic uncertainty and (right) coverage probability as a function of σ using the NIP (noninformative), MIP
(mildly informative) and SIP (strongly informative) prior distributions for a sample of size 5.

Table 2. Median percentage reduction in characteristic uncertainty
using MIP and SIP prior distributions, relative to the noninformative
NIP distribution, for various sample sizes n.

n 2 3 4 5 6 7 8 9 10

MIP/% 72.9 37.9 23.1 15.9 11.9 9.3 7.6 6.4 5.5
SIP/% 75.5 42.0 26.9 19.1 14.6 11.6 9.5 8.1 7.0

The above illustrations are for v= 1, but the advantages of
utilizing MIP and SIP prior distributions would be the same
for any value of v if they were valid judgments, and the con-
sequences of under-estimating σ2 would be the same for any
value of v. In particular, graphs of expected characteristic
uncertainty and coverage probability for different values of
v would be identical to figure 1 (left and right, respectively)
except that the x-axis values would be multiplied by

√
v.

The illustrations are also for n= 5. The reduction in char-
acteristic uncertainty will be smaller for larger values of n, but
will also be even larger for n< 5, as shown in table 2.

We suggest that for sample sizes of 8 or less, the informative
prior distributions satisfy our criterion of Benefit by offering
substantial reductions in reported uncertainty.

2.6. Reality checking

As we have stressed, there is an onus on the metrologist to
justify the choice of an informative prior distribution. The
primary requirement is to be able to document the evidence
and experience in support of a prior estimate v for σ2 such that
the metrologist can be confident that σ2 lies within a factor 3
(for SIP) or 9 (for MIP) either side of v. The sample data can-
not be used to estimate or suggest a value for v, since to do
so (such as by setting v= s2) would entail counting the data
twice; the evidence in support of the prior distribution must be
prior knowledge. Two suggestions can be made to assist with
the choice.

First, it is safe to err on the side of expressing weaker prior
information. If, for instance, the metrologist can justify con-
fidence that σ2 lies within a factor 5 of v, then the MIP prior is
acceptable. The expected coverage of the resulting 95 % inter-
vals with the weaker prior will actually be greater than 95 %,

Table 3. Percentiles of F distributions.

MIP SIP

n 25th 50th 75th 95th 25th 50th 75th 95th

2 0.12 0.59 2.02 10.13 0.11 0.50 1.54 5.32
3 0.32 0.88 2.28 9.55 0.30 0.76 1.66 4.46
4 0.42 1.00 2.36 9.28 0.41 0.86 1.67 4.07
5 0.49 1.06 2.39 9.12 0.49 0.91 1.66 3.84
6 0.53 1.10 2.41 9.01 0.53 0.95 1.66 3.69
7 0.56 1.13 2.42 8.94 0.56 0.97 1.65 3.58
8 0.58 1.15 2.43 8.89 0.59 0.99 1.64 3.50
9 0.60 1.16 2.44 8.85 0.61 1.00 1.64 3.44
10 0.61 1.17 2.44 8.81 0.63 1.01 1.63 3.39

while there will still be some gain in terms of shorter inter-
vals and reduced characteristic uncertainty compared with the
standard frequentist method of the GUM.

Second, it is possible to test whether the observed sample
variance s2 is consistent with the stated prior distribution for
σ2. Formally, if the prior distribution is valid, the predict-
ive distribution of the ratio s2/v is shown in appendix B.5
to be Fn−1,8 for the SIP prior, and Fn−1,3 for the MIP prior,
where Fν1,ν2 denotes the Snedecor F distribution with degrees
of freedom ν1 and ν2. There would be concern about the valid-
ity of the prior distribution if the ratio is very large, since this
would suggest that σ2 is larger than expected by the prior dis-
tribution, and this is when the coverage decreases significantly.
It is therefore suggested that a laboratory using these simple
informative prior distributions should routinely compute s2/v.
Over time, these values should resemble random draws from
the corresponding F distribution. A single particularly large
value should be cause for investigation and possible choice of
an alternative or weaker prior distribution.

The metrologist does not, however, need to be familiar
with F distributions because table 3 suffices to facilitate these
checks. For each value of n from 2 to 10, and for each informat-
ive prior distribution, four percentiles are given, the 25th, 50th,
75th and 95th. Over time, when using these distributions for
many measurements, the metrologist should find that approx-
imately equal numbers of the computed s2/v values lie below
the corresponding 25th percentile, between the 25th and 50th,
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between the 50th and 75th, and above the 75th. Values above
the 95th percentile should be found only occasionally (approx-
imately once in 20 measurements).

If the four proportions are far from equal, or if values
of s2/v exceed the 95th percentile, the following actions are
suggested.

• If many more s2/v values fall below the corresponding 50th
percentiles than above, the metrologist may be tending to
give values of v that are too large, thereby overestimating
the values of σ2. Smaller characteristic uncertainty values
could overall have been reported by better prior estimation
of σ2.

• Conversely, if many more s2/v values fall above the corres-
ponding 50th percentiles than below, the metrologist may be
tending to give values of v that are too small, thereby under-
estimating the values of σ2. This is a more serious departure
from the norm of equal proportions, since it will mean that
the metrologist’s reported characteristic uncertainty values
may have been overall too small.

• If, when using the MIP prior distribution, many more s2/v
values fall between the corresponding 25th and 75th per-
centiles than outside this interval, the metrologist could
more often justify using the stronger SIP distribution.

• Conversely, if when using the SIP prior distribution many
fewer s2/v values fall between the corresponding 25th and
75th percentiles than outside that interval, the metrologist
is often using the stronger prior distribution when only the
weaker MIP distribution would be justified.

• A single value of s2/v exceeding the 95th percentile is a
cause for concern because it suggests that the informative
prior distribution may not be valid, and that the character-
istic uncertainty is likely to be underestimated. Such val-
ues can be expected to occur by chance, about once in
every twenty measurements, even if the prior distribution is
valid but should always cause metrologists to check their
justification.

We suggest that table 3 and the above check actions could
be provided as a standard laboratory reference document.
Quality assurance procedures are familiar requirements in any
laboratory, and what we are proposing here is in that sense
nothing new, and indeed to be expected.

The ability to validate the prior distribution by checking its
consistency with the data is an important practical feature of
our proposed simple informative Bayesian methods, and sat-
isfies our Verification criterion.

3. Informative prior distributions for model inputs

In section 2 we considered a single Type A evaluation of
a measurand X, but measurement often involves a measure-
ment model to relate the measurand Y to a number of inputs
X1,X2, . . ., each of which may have a Type A or Type B eval-
uation. The simple informative prior distributions proposed in
section 2.2 have a role to play here, too, since reduced uncer-
tainty about any of the model inputs should lead to reduced
uncertainty about the measurand. We will illustrate the extent

of this reduction using an example in which there are six Type
A evaluations.

We follow that example by an example involving a model
with a single Type A and a single Type B evaluation. Such a
model is commonly employed in testing laboratories where n
may be as small as 3.

Additional digits in the results are reported for comparison
purposes.

3.1. A Monte Carlo algorithm

Our examples will employ the Monte Carlo method of [3] to
compute the characteristic uncertainty of a measurand defined
by a measurement model. The Monte Carlo method allows
arbitrarily accurate propagation of uncertainty inmeasurement
models. Approximate propagation methods, referred to as the
GUM uncertainty framework and the characteristic uncer-
tainty framework, are contrasted in [28].

Algorithm 2. Propagating uncertainty through a measurement
model by the Monte Carlo method.

Begin:
Given:

• A measurement model Y= f(X) expressing a measurand Y
in terms of N independent inputs X= (X1, . . . ,XN);

• A probability distribution for each of the inputs;
• A size M for the Monte Carlo sample.

Compute:
1. For each input Xi, drawM random values Xi1, . . . ,XiM from

its probability distribution
2. FormM input samples X1, . . . ,XM, where
Xj = (X1j, . . . ,XNj)

3. Form the measurand sample Y1 = f(X1), . . . ,YN = f(XM)
4. Arrange the measurand sample in increasing order
Y[1] ⩽ . . .⩽ Y[M] and form the median:
(M odd) m(Y) = Y[(M+1)/2]

(M even) m(Y) = (Y[M/2] + Y[1+M/2])/2
5. Form the characteristic uncertainty c(Y) as the smallest

positive value such that the interval
[m(Y)− 2c(Y), m(Y)+ 2c(Y)] contains 95 % of the
measurand sample

Report:
(a) The measured value (median) of Y is m(Y) with

characteristic uncertainty c(Y).
(b) The probability distribution of Y is represented by the

discrete distribution with M values Y1, . . . ,YN, each having
probability 1/M.

End

Step 1 of the Compute stage in algorithm 2 requires ran-
dom samples to be drawn from the probability distributions
of the inputs. Procedures for sampling directly from stand-
ard probability distributions are available in many comput-
ing packages. In particular, scaled and shifted t distributions
may be available to sample directly. If not, they can be readily
sampled indirectly if only standard Student’s t distributions are
available. For example, if t is a randomly sampled value from
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a Student’s t distribution with d degrees of freedom, then

x= m+
√
wt

will be a randomly sampled value from the scaled and shifted
t distribution with mean m, scale parameter w and degrees of
freedom d.

The Report stage of algorithm 2 reports the median and
the characteristic uncertainty because, as we have argued in
[28], we believe these are more meaningful as an estimate
and an expression of uncertainty for recipients of a measure-
ment report. However it is simple to modify steps 4 and 5 of
the Compute stage to compute the more traditional mean and
standard deviation.

3.2. Numerical example 1: single burning item test

Measurement of the rate of oxygen consumption constitutes
a versatile and powerful tool for estimating the rate of heat
release in fire experiments and fire tests [29, 30]. Since the
heats of combustion per unit of oxygen consumed are approx-
imately the same for most fuels commonly encountered in
fires, a measured rate of oxygen consumption can be converted
to a reliable measure of heat release rate. Standards Publica-
tion CEN/TR 16988:2016 [31] provides a method for estimat-
ing the velocity and associated uncertainty of flows associated
with small to medium size fires. A velocity-pressure probe, a
device relating the velocity of the exhaust gases to differential
pressure, measures the volume flow through an exhaust duct.
The so-called flow profile correction factor, denoted here by
κ, converts the velocity at the axis of the probe to the mean
velocity over the cross-section of the duct. It is directly pro-
portional to the volume flow and therefore to the heat release
rate. In [31, clause 2.5.13.2], κ is expressed by the model

κ=
1
5

5∑
i=1

wi
wc

(2)

with six input quantities. In expression (2), wi, i= 1, . . . ,5, are
measurements taken on five different radii and wc is a cent-
ral measurement. Each measurement is actually the average
of four independent indications taken at 90◦ intervals. The
six GUM Type A evaluations are reported in table 4. The
characteristic uncertainty of each input is the standard uncer-
tainty multiplied by k(3)/2= 1.591. The same results would
be obtained from Bayesian Type A evaluations using the non-
informative NIP prior distribution in each case.

Cox and O’Hagan [28] propagate these uncertainties
through the model (2) using the Monte Carlo method, show-
ing that the median estimate of κ is 0.817 and its character-
istic uncertainty is 0.076. They also employ an approximate
computation in which the law of propagation of uncertainty is
used to propagate characteristic uncertainties through a linear-
ized version of the model, obtaining the same median estim-
ate and an approximate characteristic uncertainty of 0.075.
We now consider the effect of introducing informative prior
distributions.

We suppose that the metrologist provides the same prior
distribution for each input’s σ2 parameter, with an estimate of
v= 1m2 s−2. That is, in each case the metrologist estimates
the standard deviation of the Gaussian sampling error to be
1m s−1. (Note that we are not assuming that the inputs have
the same σ2 parameter. The parameters only have the same,
independent, prior distributions, thereby allowing them to dif-
fer within the range of that common prior distribution.) We
consider the effect of using independent MIP(v) prior distribu-
tions for all six inputs, and of using independent SIP(v) prior
distributions instead.

The evaluation of each input can now be made by following
algorithm 1 in section 2.4. The sum of squares S required in
the algorithm can be inferred by noting that S= (n− 1)s2 =
n(n− 1)u2(wi). The u(wi) values are given in the third column
of table 4 and in each case n= 4. The evaluations yield scaled
and shifted t distributions with degrees of freedom d∗ = 6 and
d∗ = 11 with MIP and SIP prior distributions, respectively. In
table 5, the second and third columns give the corresponding
values of v∗. Using the Monte Carlo algorithm 2, we sample
from these distributions and apply expression (2) to obtain a
sample of κ, from which the characteristic uncertainties are
found to be 0.052 with MIP prior distributions and 0.045 with
SIP distributions. More details of these computations can be
found in appendix C.2.

As expected, the additional prior information has reduced
the measurement uncertainty regarding κ compared with
the characteristic uncertainty of 0.076 obtained with NIP
distributions. The reductions achieved by theMIP and SIP dis-
tributions are substantial in this example, more than 30 % and
40 % respectively.

We now apply the reality check suggested in section 2.6.
The relevant row of table 3 is for n= 4. We have v= 1 and
for each quantity the relevant value of s2 is 4 times the square
of the standard uncertainty in the third column of table 4. We
only have six values for s2/v, but none of the checks sugges-
ted there indicates a problem with the prior distribution except
the last one. If we use SIP prior distributions then one of the
values (5.13) exceeds the 95th percentile (4.07). Although one
such instance in six measurements is not particularly unexpec-
ted, the reality checks suggest that in this case the metrologist
should use the MIP distribution.

The prior information in this example is of course not a
genuine metrologist’s opinion but arbitrarily chosen for the
purpose of illustration. In practice, metrologists having such
a sample of just six s2/v values might still use the SIP prior
distribution if they felt it could be justified.

3.3. Numerical example 2: model involving a Type A and a
Type B evaluation

In [28], consideration was given to the measurement model

Y= X1 +X2,

where the measurand Y is modelled as a quantity X1, evalu-
ated as the sample mean of n independent normally distributed
observations, plus an independent correction term X2.
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Table 4. GUM/NIP evaluations for the single burning item test.

Quantity Estimate/ms−1 Standard uncertainty/ms−1 Degrees of freedom Characteristic uncertainty/ms−1

w1 7.00 1.132 3 1.801
w2 9.39 0.412 3 0.656
w3 10.62 0.531 3 0.845
w4 11.25 0.180 3 0.286
w5 12.37 0.233 3 0.371
wc 12.39 0.636 3 1.012

Table 5. Computations with MIP and SIP prior distributions,
Example 2.

Input quantity MIP v∗ SIP v∗ s2/v

w1 3.0628 2.1252 5.13
w2 0.8395 0.9124 0.68
w3 1.0639 1.0349 1.13
w4 0.5648 0.7626 0.13
w5 0.6086 0.7865 0.22
wc 1.3090 1.1685 1.62

Suppose the measurand is the primary length of some arte-
fact of nominal length 100m and n= 5 independent normally
distributed observations

(99.87, 99.58, 99.52, 99.93, 99.60) m

of X1 are made, with a sample mean of 99.700m. Reporting as
in [28], X1 has median 99.700m, standard uncertainty 0.083m
and characteristic uncertainty

c(X1) = u(x1)kn−1/2= 0.116m.

Various sources of information regarding X2 were considered
in [28]. Here, we select one of these sources: a Type B eval-
uation is carried out for X2 assuming that the correction lies
between −0.10m and 0.10m. A uniform (rectangular) distri-
bution is assigned between these bounds, which therefore has
mean and median 0.000m, and characteristic uncertainty

c(X2) = 0.95/2× 0.10m= 0.048m.

It was judged that for X1 a prior estimate v of the vari-
ance σ2 of the MIP and SIP was 0.02m2. Applying algorithm
1 in section 2.4, gave posterior degrees of freedom d∗ = 7
and posterior variance estimate v∗ = 0.028m2 for the MIP.
The corresponding values for the SIP were d∗ = 12 and v∗ =
0.025m2.

The Monte Carlo algorithm 2 was applied with M= 107

trials, with the uniform distribution for X2 and the t distri-
bution for X1 from algorithm 1. The resulting characteristic
uncertainty of Y was 0.112m for the MIP and 0.106m for the
SIP. These compare with 0.127m for the NIP (essentially the
method in [3]). The MIP gave a 12 % reduction over NIP and
the SIP a 17 % reduction.

The reality check of section 2.6 gave s2/v= 1.73, consid-
erably smaller than the 95th percentiles of the F distribution
for n= 5.

4. Conclusions

The metrologist frequently has prior knowledge concerning
the likely magnitude of errors in the sample indications for
a quantity subject to Type A evaluation. We have presented
two simple prior distributions, the MIP and SIP distributions,
to encode such prior information about the observation error
variance. We have shown how they can be rigorously justified
in practice through specific prior judgments, presented simple
formulae to incorporate them in a Bayesian Type A evalu-
ation and given equally simple procedures to verify their valid-
ity over a series of measurements. Explicit algorithms have
been provided for the Type A evaluation of a single measur-
and, and for the case when it is an input to a measurement
model. We have presented examples illustrating the advant-
ages of these prior distributions in terms of reduced measure-
ment uncertainty in Type A evaluation, showing how even lar-
ger reductions in uncertainty for a measurand can be achieved
when several Type A evaluations contribute to a measure-
ment model. Although those reductions have been presented
in terms of characteristic uncertainty, for the reason stated in
section 2.3, almost identical reductions are achieved in stand-
ard uncertainty.

The mildly informative MIP and the more strongly inform-
ative SIP prior distributions have thereby been shown to satisfy
the desiderata of Justification, Simplicity, Benefit and Verific-
ation for informative Bayesian methods to be acceptable for
use in metrology.

Type A evaluation from a sample of indications assumed
to be normally distributed is employed daily by metrologists
in laboratories worldwide. In all these applications, the MIP
and SIP prior distributions would offer substantial reductions
in measurement uncertainty over the existing GUMprocedure,
without requiring any more sophisticated computations.

It is our hope that the manifest benefits to their work, and
to their clients, from the adoption of these simple informat-
ive priors will stimulate our target audience to seek similarly
simple and effective Bayesian methods in other common Type
A evaluations. Further, we hope that researchers will meet that
demand by adapting more complex Bayesian methods to the
practicalities of everyday metrology.
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Appendix A. Expectations of Bayesian coverage
intervals

Here we prove the result stated in section 1.4 concerning the
expected coverage of Bayesian intervals.

In this appendix we denote the measurand by θ and the data
to be used in a Type A evaluation of θ by t. Bayesian meth-
ods derive the posterior distribution of θ, denoted by p(θ | t)
by applying Bayes’ theorem to combine the prior distribution
p(θ) with the information in the data, represented by the like-
lihood function p(t | θ). Various forms of Bayesian inference
may be obtained from the posterior distribution. We focus on
a 95 % coverage interval, usually referred to in Bayesian ana-
lysis as a posterior credible interval Θ(t) defined such that
P(θ ∈Θ(t) | t) = 0.95, a conditional probability that applies
for given data t. The claim in section 1.4 is that the uncon-
ditional probability P(θ ∈Θ(t)) is also 0.95.

There are two random variables here, θ and t, and we con-
sider an event, θ ∈Θ(t), that depends on both. In general, con-
sider an event F depending on two random variables Y and Z.
A standard result in probability theory (the law of total prob-
ability, a special case of the law of iterated expectation) states

P(F) = E(P(F |Z)) . (3)

The interpretation here is that on the left-hand side the prob-
ability of F is unconditional, and therefore averaged over the
joint distribution of both Y and Z. On the right-hand side,
the term P(F |Z) is the conditional probability of F, averaged
over the conditional distribution of Y given Z. This conditional
probability is in general a function of Z, and we then take the
expectation of this function, averaging with respect to the mar-
ginal distribution of Z.

We will apply the general result in two ways. In both cases,
we take F to be the event θ ∈Θ(t). First, let Y be the measur-
and θ and Z the data t; then the theorem says

P(θ ∈Θ(t)) = E(P(θ ∈Θ(t) | t)) ,

but the Bayesian interval has the property that P(θ ∈Θ(t) |
t) = 0.95, a constant, for all t, and the expectation of a con-
stant is a constant. Therefore, the unconditional probability
P(θ ∈Θ(t)) is also 0.95.

However, it should be recognized that the Bayesian pos-
terior distribution is only a valid opinion of the metrologist
regarding the measurand after seeing the data t if the prior dis-
tribution is a valid opinion before the data. Hence the state-
ment P(θ ∈Θ(t) | t) = 0.95 and the above proof depends on
the validity of the prior distribution.

The role of the prior distribution becomes clearer if we
reverse the roles of Y and Z in expression (3), so that now Y is
t and Z is θ. The theorem now says that

P(θ ∈Θ(t)) = E(P(θ ∈Θ(t) | θ)) .

The probability P(θ ∈Θ(t) | θ) is the frequentist coverage
probability, in which we consider the measurand θ to be fixed
and compute the frequency with which θ ∈Θ(t) over an infin-
ite sequence of random draws of the data t. For a frequentist
95 % interval, this coverage is 0.95 for all θ, which, being
constant, the unconditional probability is also 0.95. For a
Bayesian interval, however, P(θ ∈Θ(t) | θ) depends on θ. We
have proved that the unconditional probability is 0.95, and
hence its frequentist coverage will be 0.95 when averaged with
respect to the prior distribution. The practical interpretation is
that over a long sequence of measurements the Bayesian inter-
vals will contain the true measurand values 95 % of the time
only if the corresponding θ values behave as if sampled from
the metrologist’s prior distribution.

Appendix B. Simple informative prior distributions

The inverse-chi-squared (ICS) family of distributions is widely
used in Bayesian statistics to represent prior information about
a variance for normally distributed data. Applications of ICS
distributions inmetrology include stiffness of anisotropic solid
materials using ultrasound spectroscopy [32], lithographic
control using critical dimension scanning electron microscope
[33] and construction of a curve fitted to points in a two-
dimensional coordinate system [34]. In order to address the
needs and concerns of our target audience, and to meet our
four desiderata of section 1.6, we have identified two specific
members of that family that can readily be used and justi-
fied in routine laboratory applications. In this appendix, we
present some standard theory of ICS distributions and develop
the MIP and SIP cases that are presented in section 2.2 as
simple ‘default’ choices for variances of measurement devices
in metrology.

If a parameter z has the ICS distribution with degrees of
freedom d and scale v, which we write as σ2 ∼ vdχ−2

d , then
the density function of z has the form

f(z) =
(vd/2)d/2

Γ(d/2)
z−1−d/2 exp

(
−vd

2z

)
.

The expectation E(z) and variance Var(z) of z are

E(z) =
d

d− 2
v, Var(z) =

2d2

(d− 2)2(d− 4)
v2

=
2

d− 4
E2(z),

provided d> 2 and d> 4, respectively [35, section 11.5].
ICS distributions provide a flexible family to represent prior

information about a variance parameter σ2. They are defined
for positive quantities, and through the choice of degrees of
freedom and scale they can represent a wide range of prior
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Figure 2. Density function of SIP(v) and (right) of the square root of SIP(v).

knowledge about σ2. For instance, if the analyst has a prior
mean t for σ2, with variance w, then this information can be
represented by an ICS prior distribution with degrees of free-
dom d= 4+ 2t2/w and scale v= t(w+ t2)/(2w+ t2). Altern-
atively, [17] interprets d+ 1 as a number of observations
corresponding to the strength of prior information, and also
suggests a more complex way of assigning d using a quantile
judgment.

There are better ways to specify a prior distribution. Formal
protocols for eliciting expert judgments, such as the SHELF
protocol [18, 36], are the gold standard for formulating prior
distributions, but require resources and expertise generally
unavailable to a laboratory making routine measurements. It
is for this everyday context that we aim for readily applied
ways to specify prior distributions.

The noninformative prior distribution (referred to as NIP
here) for σ2 used in JCGM 101 [3] to derive the Bayesian ana-
lysis in section 2.1 is a limiting case of an ICS distribution in
which the degrees of freedom parameter tends to zero.

As alternatives to the noninformative formulation, we pro-
pose two informative ICS distributions that can be assigned
in practice based only on simple judgments, even when prior
information is relatively weak. The SIP(v) and MIP(v) dis-
tributions have scale v and degrees of freedom 8 and 3,
respectively.

B.1. The SIP distribution

Figure 2 (left) shows the SIP(v) distribution. As a prior dis-
tribution for a variance σ2, it represents a judgment that σ2 is
most likely to be around the estimate v, and is highly likely
to be in the interval v/3 to 3v. Prior information about the
measurement errors is more naturally expressed in terms of
the standard deviation than the variance. The distribution of σ
when σ2 ∼ SIP(v) is shown in figure 2 (right).

Thus, the prior distribution σ2 ∼ SIP(v) represents a belief
that σ is most likely to be around its estimate of

√
v and is

highly likely to be within a factor
√
3≈ 1.732 of that value.

It is judged almost certain to be in the interval
√
v/2 to 2

√
v.

For an organization carrying out regular testing with the same
equipment, it is reasonable to suppose that there will be at least

Figure 3. Density function of the square root of MIP(v).

this level of knowledge of the standard deviation of measure-
ment errors.

B.2. The MIP distribution

The MIP(v) distribution is an alternative when there is less
certainty about σ. Figure 3 shows the distribution of σ when
σ2 ∼MIP(v). Thus, the prior distribution σ2 ∼MIP(v) repres-
ents a belief that σ is most likely to be around its estimate of√
v and is highly likely to be within the interval

√
v/3 to 3

√
v.

B.3. One normal sample with ICS prior

We show here that ICS distributions are also a convenient
choice because they allow a simple application of Bayes’ the-
orem to combine the prior distribution with the information in
the data. Formally, they are conjugate distributions [37] for the
variance of a normal sample.

Consider the case of a single normal sample, as in
section 2. Suppose that σ2 ∼ vdχ−2

d , and we assign a non-
informative uniform prior to µ. Standard Bayesian analysis
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[35] yields a posterior distribution with the following
features.

• σ2 ∼ v∗d∗χ−2
d∗ , where

d∗ = d+ n− 1, v∗ =
vd+(n− 1)s2

d∗
.

Thus, the n− 1 degrees of freedom in the sample is augmen-
ted by the d degrees of freedom in the prior distribution.
The posterior scale parameter v∗ is a weighted average of
the prior scale parameter v and the sample variance s2, with
weights proportional to their respective degrees of freedom.

• µ has a scaled and shifted Student’s t distribution with
mean x̄ and scale parameter v∗/n. Its variance is v∗d∗/
[n(d∗ − 2)]. For d∗ > 2 (as it is with both the MIP and SIP
prior distributions), the variance exists, even for a sample of
size 1.

Therefore, a metrologist using an ICS prior distribution
such as MIP(v) or SIP(v) will assign the median estimate
x̄, just as in the original GUM analysis, with characteristic
uncertainty

c(µ) =
k(d∗)
2

√
v∗

n

as in expression (1). Notice that when d= 0 the value of v
is irrelevant: it has no effect on the posterior distribution of
either µ or σ2. This is why we omit v when designating the
noninformative prior distribution as NIP.

B.4. Alternative forms of algorithm 1

Section 2.4 presents the basic algorithm 1 for Type A evalu-
ation with reporting of the measurement result in the form of
(a) the median and characteristic uncertainty, and (b) the prob-
ability distribution of the measurand. This is the form advoc-
ated by [28] and described as ‘meaningful expression of uncer-
tainty in measurement’ (MUM).

Although we strongly prefer the MUM form of report-
ing, we recognize that a metrologist may nevertheless wish
to express uncertainty using a standard deviation. As noted in
section 2.3, there are different definitions of standard uncer-
tainty, with different interpretations, according to the frequent-
ist and Bayesian statistical paradigms. The use of an informat-
ive prior distribution, whether MIP or SIP, implies adoption of
the Bayesian paradigm and accordingly it would be natural to
report the Bayesian standard uncertainty (BSU), which is the
standard deviation of the posterior distribution.

Somemetrologists are uncomfortable with the BSU, at least
in the case of a NIP distribution, preferring the frequentist
standard uncertainty s/

√
n of the GUM. There is no genuinely

frequentist standard uncertainty available when an informat-
ive prior distribution has been used, but an obvious analogue
would by

√
v∗/n, whichwe refer to as a hybrid standard uncer-

tainty (HSU).

Algorithm 1A. Type A evaluation from a normal sample with MIP
or SIP prior information and reporting Bayesian (BSU) or hybrid
(HSU) standard uncertainty.

Begin: Follow algorithm 1 until step 6 of the Compute section:
6. Form standard uncertainty

(BSU) u(µ) =
√
d∗/(d∗ − 2)

√
v∗/n)

(HSU) u(µ) =
√
v∗/n

Report:
(a) The measured value (mean) of µ is x̄ with standard

uncertainty u(µ)
(b) (BSU) The quantity µ has a t distribution with mean x̄,

scale parameter v∗/n and degrees of freedom d∗

(HSU) The degrees of freedom associated with the
measurement is d∗

End

B.5. Predictive distribution

We now derive the predictive distribution for the ratio s2/v in
section 2.6. Conditional on σ2, s2/v has the scaled chi-square
distribution

s2

v
| σ2 ∼

σ2

v
(n− 1)−1χ2

n−1 .

In general, if the prior distribution of σ2 is ICS with degrees
of freedom d and scale parameter v, then

σ2

v
∼ dχ−2

d .

Therefore the unconditional, that is, the prior predictive, dis-
tribution of s2/v is

s2

v
∼

(n− 1)−1χ2
n−1

d−1χ2
d

= Fn−1,d .

Thus, in the case of a MIP(v) prior distribution, the predictive
distribution is Fn−1,3, and in the case of a SIP(v) prior distri-
bution it is Fn−1,8.

Appendix C. Computations in the examples

C.1. Computations for the single normal sample example

Section 2.5 presents results for a single normal sample, using
NIP, MIP and SIP prior distributions for σ2. In general, con-
sider a sample of size n and a sample variance of s2, and
for convenience write W= (n− 1)s2/σ2. The characteristic
uncertainty for the NIP distribution (and for the frequentist
analysis) is half the expanded uncertainty:

c(µ) =
1
2
k(n− 1)

s√
n
=

1
2
k(n− 1)

√
σ2W

n(n− 1)
.

From expression (1), for the MIP(v) prior,

c(µ) =
1
2
k(2+ n)

√
3v+σ2W
n(2+ n)

, (4)
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and, for the SIP(v) prior,

c(µ) =
1
2
k(7+ n)

√
8v+σ2W
n(7+ n)

. (5)

Since W∼ χ2
n−1, the expected values of these characteristic

uncertainties can all be computed for given σ2 and n by numer-
ical integration or by a Monte Carlo computation.

The graphs of expected characteristic uncertainty for MIP
and SIP priors in figure 1 (left) were computed for n= 5, v= 1
and each value ofσ byMonte Carlo, sampling 106 values of W.

Section 2.5 also reports the median percentage reduction in
characteristic uncertainty obtained by the MIP and SIP prior
distributions, relative to the NIP distribution, and the probabil-
ity that the reduction is positive. In each case, the calculations
assume that σ2 is drawn from the metrologist’s prior distribu-
tion, MIP or SIP respectively. These were computed by Monte
Carlo again, sampling 106 values of both W and σ2. For each
sampled pair, the characteristic uncertainties were calculated
as given above and the percentage reduction using the MIP
or SIP prior was computed. The median reduction was then
computed as the median of the 106 percentage values and the
probability of a reduction was computed as the proportion of
percentage reductions that were positive.

For each prior distribution, the 95 % credible interval is
x̄± 2c(µ). For the NIP distribution, the coverage probability
is 95 %, for all σ2, but for the informative priors the coverage
is a function of σ2. To compute this coverage, we note that the
credible interval contains the measurand value µ if

(x̄−µ)
2 ⩽ 4c2(µ),

and we now let V= n(x̄−µ)
2
/σ2 ∼ χ2

1. The coverage prob-
ability can then be computed by a simple Monte Carlo compu-
tation. In the case of the MIP(v) prior, randomly draw a value
V from the χ2

1 distribution and a value W from the χ2
n−1 dis-

tribution, and then evaluate the condition

σ2V
n

⩽ [k(2+ n)]2 (3v+σ2W)

n(2+ n)

and therefore

fV−W⩽ 3v
σ2

,

where

f=
2+ n

[k(2+ n)]2
.

The coverage probability is then estimated by the proportion of
times this condition is satisfied in a large number of simulated
draws of (V,W). The corresponding condition for the SIP(v)
prior is readily derived.

The graphs of coverage probability for MIP and SIP priors
in figure 1 (right) were computed for n= 5 and v= 1 and each
value of σ by Monte Carlo, sampling 106 values of V and W.

Note that the coverage condition does not depend on µ at
all, and only depends on σ2 and v through their quotient v/σ2.

C.2. Computations for the multiple normal samples example

In the single burning item test example of section 3.2, the
model (2) expresses the measurand κ in terms of six inputs. As
shown in section 3.2, they are evaluated to have independent
t distributions. If they were assigned MIP prior distributions
the degrees of freedom for each input would be 6, while they
would have 11 degrees of freedom if SIP prior distributions
were assigned. For both prior distributions, the means of the
t distributions are given in the second column of table 4. The
scale parameters are given in the second or third column of
table 5 in the case of MIP or SIP distributions respectively.

For example, in the case of the MIP prior, the input w1

has a t distribution with 6 degrees of freedom, mean 7.00 and
scale parameter 0.7657. Thus, its variance is 0.7657× 6/4=
1.1486 and its standard deviation is therefore 1.072.

Algorithm 2 was applied using the measurement model
equation (2), the respective t distributions of the six input
quantities and a Monte Carlo sample size of M= 106. If
sampling from the t distributions arising from the MIP priors,
the characteristic uncertainty was found to be c(κ) = 0.052,
while if sampling from the t distributions arising from SIP pri-
ors then c(κ) = 0.045.
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