
Understanding the uncertainty in the biospheric
carbon flux for England and Wales

John Paul Gosling† and Anthony O’Hagan

30th November, 2007

Abstract

Uncertainty analysis is the evaluation of the distribution of a computer

code output Y given uncertainty about the code’s true inputs X. When we

sum the outputs of a number of different codes, it is important to account

for the different sources of uncertainty that can arise.

An estimate of the biospheric carbon flux for England and Wales re-

quires the outputs of many different computer codes to be aggregated. In

this report, the techniques needed for output aggregation will be discussed

and the process of producing estimates of the carbon flux will be reviewed.

This includes an independent normal approximation to a Dirichlet distri-

bution for proportion parameters.

1 Introduction

Kennedy et al. (2007) gives an estimate of the mean and variance of net biome

productivity (NBP) for England and Wales in the year 2000 based on output

from a dynamic vegetation model (DVM). We would like to use the DVM to

calculate NBP at 707 sites across Engalnd and Wales; however, due to the com-

plexity of the model and the fact that the inputs are unknown, it is not feasible

to do this. The estimate is found using Bayesian uncertainty analysis techniques

(see Oakley and O’Hagan, 2002) that incorporate an extension of typical uncer-

tainty analyses: uncertainty analysis for a linear combination of computer code

†Address for correspondence: John Paul Gosling, Department of Probability and Statistics,

University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.

Email: J.P.Gosling@sheffield.ac.uk

1

outputs. This report serves to explain the theory behind the uncertainty analysis

of aggregated computer code output and to clarify the sources of uncertainty in

the final estimate of the NBP.

In Kennedy et al. (2007), three sources of uncertainty are considered. There

is uncertainty due to the fact that the inputs into the DVM are unknown; for

example, we do not know the exact percentage of soil that is clay at any site as

each site has an area of about 210km2. This is the type of uncertainty that is

dealt with in conventional uncertainty analyses. The DVM cannot be evaluated

for every possible input configuration; therefore, it is unknown at all input con-

figurations apart from the ones we have run it with. We use emulation as detailed

in Oakley and O’Hagan (2002) to account for this uncertainty. The third source

of uncertainty stems from the fact that the emulation process would be too costly

to carry out for all 707 sites, and we must interpolate from the sites where we

use emulation to cover all of England and Wales.

In Section 2, a generic analysis is presented that introduces the key issues cov-

ering parameter uncertainty, code uncertainty and interpolation uncertainty. In

that section, the theory required to carry out uncertainly analysis on aggregated

computer code output is built up from the simple case where the output of the

computer code is known for all inputs to the situation where the computer code

is known for only a few sites (as it is in the estimation of NBP). The calculation

of the NBP estimate is considered in Section 3 using the theory developed in

Section 2.

Some of the inputs of the DVM are correlated proportions and, in the uncer-

tainty analysis of Kennedy et al. (2007), independent normal distributions were

used to represent our expert’s beliefs instead of a more appropriate Dirichlet dis-

tribution. In Section 4, the validity of using independent normal distributions to

model dependent proportion parameters is investigated.

2

2 A linear combination of code outputs

Consider the linear combination

Y =
n
∑

i=1

αifi(xi), (1)

where αi is a known scalar and fi(xi) is the scalar output of a computer code run

for inputs specified by xi for each i. In Kennedy et al. (2007), two indices are

summed over rather than the one given in equation (1); however, it is straight-

forward to convert this into the form given in equation (1) as the indexing sets

are both finite. Different aspects of Y may be unknown to us: the true inputs

of the code may be unknown and the outputs of {fi} may not be known for all

possible inputs. To understand the sources of uncertainty, we first consider the

effect of knowing the outputs of {fi} for all possible input values whilst being

uncertain about the true values of the inputs.

2.1 Unknown computer code inputs

In this case, we know the value of each fi(xi) for all possible inputs. We would

like to know what value we expect Y to take and what is the uncertainty around

this estimate induced by the uncertainty in the inputs. Our expectation and

uncertainty for Y is given by the following:

EX(Y |{fi}) = M = EX

(

n
∑

i=1

αifi(Xi)

∣

∣

∣

∣

∣

{fi}

)

=
n
∑

i=1

αiEXi
(fi(Xi)|fi) , (2)

3

VarX(Y |{fi}) = V = VarX

(

n
∑

i=1

αifi(Xi)

∣

∣

∣

∣

∣

{fi}

)

=
n
∑

i=1

αi
2VarXi

(fi(Xi)|fi)

+ 2
n−1
∑

i=1

n
∑

j=i+1

αiαjCovXi,Xj
(fi(Xi), fj(Xj)|fi, fj) . (3)

In the light of the uncertainty about the inputs xi, M can be seen as our best

estimate of Y and V describes the uncertainty in this estimate. In principle,

both M and V can be calculated either analytically or numerically depending on

{fi(.)} as we know {fi(.)} for all possible inputs. For instance, they might be

found by Monte Carlo sampling, in which random samples are drawn from the

distributions of each of the xis and fi(xi) derived for each sample value. Then

the means, variances and covariances required in (2) and (3) can be computed

as sample values. Of course, such a computation is not exact, but can be made

as exact as required by taking sufficiently large samples. The variances of errors

in the computations can also be measured in the usual way for Monte Carlo

computation.

In the following sections, we address the situation where this kind of computa-

tion is not feasible. That is, we cannot evaluate means, variances and covariances

analytically, and conventional numerical methods such as Monte Carlo or quadra-

ture are not practical because the functions fi are so costly or time-consuming

to evaluate that we cannot perform enough function evaluations to produce ac-

curate computations. This is the situation with the DVM studied in Kennedy et

al. (2007).

It is therefore important to distinguish between uncertainty in Y due to un-

certainty about model inputs and uncertainty due to imperfect computation. The

implications of input uncertainty are encapsulated in the quantities M and V ,

that we wish to compute. The uncertainty due to imperfect computation can be

4

viewed as a consequence of the functions fi being unknown.

2.2 Unknown computer code outputs

Suppose that both the functions and their inputs are unknown. Although in

principle each function is known, so that fi(x) can be determined for any x the

complexity of the simulator means that before running the computer code its

output is unknown in practice. From a Bayesian perspective, we regard f(.) as

an unknown function, and, in line with O’Hagan (1992), we represent it with

a Gaussian process model. We do have some training data Di = {(xj, fi(xj))}

for each fi so that we can build a statistical emulator for each fi using the

Gaussian process model. Kennedy et al. (2007) use a program called GEM-SA

(see http://www.tonyohagan.co.uk/academic/GEM/index.html) that uses Di

to build the emulator for each fi. GEM-SA can calculate a number of quantities

that we need in our uncertainty analysis. An explanation of GEM-SA and its

outputs can be found in Kennedy (2004).

The emulator describes uncertainty about each fi given the training data

Di, and so enables us to quantify uncertainty in M and V due to imperfect

computation. We will refer to this as emulation uncertainty.

Given that we are uncertain about the function outputs for any inputs, our

expectation of M from equation (2) is

E{fi}(M |{Di}) = E{fi}(EX(Y |{fi})|{Di})

=
n
∑

i=1

αiEfi
(EXi

(fi(Xi)|fi) |Di) . (4)

We need to calculate Efi
(EXi

(fi(Xi)|fi) |Di); in GEM-SA, it is called the mean

of expected code output.

Our uncertainty about {fi} leads to uncertainty about the calculation of M .

5

The variance about M due to this emulation uncertainty is given by

Var{fi}(M |{Di}) = Var{fi}(EX(Y |{fi})|{Di}),

and from (2) this becomes

Var{fi}(M |{Di}) =
n
∑

i=1

αi
2Varfi

(EXi
(fi(Xi)|fi) |Di)

+ 2
n−1
∑

i=1

n
∑

j=i+1

αiαjCovfi,fj

(

EXi
(fi(Xi)|fi) , EXj

(fj(Xj)|fj) |Di,Dj

)

. (5)

Kennedy et al. (2007) treat the emulators as independent (this assumption will

be discussed in Section 3). With this assumption, equation (5) becomes simply

Var{fi}(M |{Di}) =
n
∑

i=1

αi
2Varfi

(EXi
(fi(Xi)|fi) |Di) . (6)

We must calculate Varfi
(EXi

(fi(Xi)|fi) |Di); in GEM-SA, it is called the vari-

ance of expected code output.

Given our uncertainty about {fi}, we must consider what value we expect V

to take. From (3) we have

E{fi}(V |{Di}) =
n
∑

i=1

αi
2Efi

(VarXi
(fi(Xi)|fi)|Di)

+ 2
n−1
∑

i=1

n
∑

j=i+1

αiαjEfi,fj

(

CovXi,Xj
(fi(Xi), fj(Xj)|fi, fj)

∣

∣Di,Dj

)

. (7)

Again, we can use GEM-SA to calculate Efi
(VarXi

(fi(Xi)|fi)|Di); it is called

the mean of total variance in code output. The expected covariances in the second

6

part of equation (7) can be calculated using

Efi,fj

(

CovXi,Xj
(fi(Xi), fj(Xj)|fi, fj)

∣

∣Di,Dj

)

=

{

Efi,fj
[VarXi,Xj

(fi(Xi) + fj(Xj))|Di,Dj]

−Efi
[VarXi

(fi(Xi))|Di] − Efj
[VarXj

(fj(Xj))|Dj]
}

/2. (8)

However, the calculation of Efi,fj
[VarXi,Xj

(fi(Xi) + fj(Xj))|Di,Dj] can be diffi-

cult due to the stronger assumptions and extra numerical complexity of bivari-

ate emulation (see Conti and O’Hagan, 2007). We use Efi+fj
[VarXi,Xj

(fi(Xi) +

fj(Xj))|Di,Dj] as an approximation instead as this only requires a univariate

emulator. When emulating fi + fj, we hope to capture the joint structure be-

tween the two functions. This approximation will be close to the true expectation

provided that the emulator of fi + fj is sufficiently accurate. It can be shown

that

VarXi,Xj
(fi(Xi) + fj(Xj)) =

∫

fi(xi)
2dGi(xi)

+

∫

fj(xj)
2dGi(xi) + 2

∫

fi(xi)fj(xj)dGij(xi,xj)

−

(
∫

fi(xi)dGi(xi) +

∫

fj(xj)dGj(xj)

)2

, (9)

where Gi is the distribution that characterises the beliefs about the input vector

xi. Now, Efi+fj
[VarXi,Xj

(fi(Xi) + fj(Xj))|Di,Dj] can be calculated using the

relationship in equation (9) and the emulator of the fi + fj. Notice now that,

in addition to n emulators for the n individual functions fi, we need to build

n(n− 1)/2 emulators for the sums fi + fj. However, this is a simple exercise and

requires no extra evaluations of the functions themselves.

The results (4), (6) and (7) describe the consequences of uncertainty about

the functions fi which result in imperfect calculation of M and V . Thus, (4)

is our estimate of M , and hence of Y ; (6) describes uncertainty about M due

7

to emulation; and (7) is our estimate of the uncertainty about Y due to input

uncertainty. It would be possible to develop equations for the variance of V due

to emulation uncertainty, but these three results are enough to characterise the

principal components of uncertainty. In particular, the emulation variance (6)

and the input variance (7) can be combined using the identity

VarX(Y |{Di}) = E{fi}(VarX(Y |{fi})|{Di}) + Var{fi}(EX(Y |{fi})|{Di})

= E{fi}(V |{Di}) + Var{fi}(M |{Di}); (10)

this gives us the total uncertainty in (4) as an estimate of Y , due to both input

and emulation uncertainties.

2.3 No training data for some fi

In this case, the functions and inputs are again unknown. We also do not have

training data for every one of the fis. Let I denote the set of indices i for which we

have data Di. We proceed by interpolating the emulation results for the functions

that have training data available using a set of functions {µ}; this implies that

we must have a spatial structure in which we can position the functions. We only

know the exact value of {µ} for the functions with training data available; hence,

there is an extra source of uncertainty here. Note that by kriging the emulator

results we are now acknowledging correlation between emulators, whereas, in the

previous section, we stated that the emulators would be treated as independent.

If the emulators are sufficiently accurate, then this interpolation is reasonable

provided that the functions we have training data for cover the range of different

behaviour in the complete set of functions.

We define the sets of emulator results for the functions where we have training

8

data as follows:

ME = {Efi
(EXi

(fi(Xi)|fi) |Di) : i ∈ I} ,

MV = {Varfi
(EXi

(fi(Xi)|fi) |Di) : i ∈ I} ,

VE = {Efi
(VarXi

(fi(Xi)|fi)|Di) : i ∈ I} , (11)

where the set elements are as defined in the previous section. We interpolate

these sets of results using ordinary kriging techniques (see Matheron, 1971). In

order to krige each set of results, we must specify a correlation structure between

the unknown functions. We find the correlation structure for each interpolation

by fitting covariance models to the emulator results using standard variogram

fitting techniques of Cressie (1993). The fitted correlation structures for ME,

MV and VE are denoted by C(ME), C(MV) and C(VE) respectively. Note

that there should be uncertainty about these parameters as we estimate the

correlation structure from a limited number of emulator results. However, in the

NBP calculations of Kennedy et al. (2007), the extra uncertainty caused by the

estimation of the correlation parameters was found to be unimportant.

For i /∈ I, we interpolate ME using the kriging function µ1 to find values for

Efi
(EXi

(fi(Xi)|fi) |Di). When kriging a set of results, we allow for uncertainty

in the interpolation; hence, we can calculate a mean result for each unknown

function and the uncertainty around that estimate. We interpolate MV using µ2

and VE using µ3.

Our expectation of Y is now given by

Eµ1

(

E{fi}(M |{Di})
∣

∣ME, C(ME)
)

=

n
∑

i=1

αiEµ1
(Efi

(EXi
(fi(Xi)|fi) |Di)|ME, C(ME)) , (12)

where Eµ1
is the expected function over the interpolating kriging functions of

9

ME. For i ∈ I,

Eµ1
(Efi

(EXi
(fi(Xi)|fi) |Di)|ME, C(ME)) = E{fi}(EX1

(fi(Xi)|fi)|Di), (13)

which is found using GEM-SA. This is due to the fact that µ1 interpolates the

emulator results. For i /∈ I, the expectation on the right of equation (12) is found

using the posterior mean from the kriging. We must allow for more uncertainty

due to the use of the kriging estimate to calculate our expectation of M ; from

(4),

Varµ1
(E{fi}(M |{Di})|MV , C(MV)) =

n
∑

i=1

αi
2Varµ1

(Efi
(EXi

(fi(Xi)|fi) |Dj)|MV , C(MV))

+2
n−1
∑

i=1

n
∑

j=i+1

αiαjCovµ1

(

Efi
(EXi

(fi(Xi)|fi) |Di), Efj
(EXj

(fj(Xj)|fj) |Dj)|MV , C(MV)
)

.

(14)

We calculate Varµ1
(E{fi}(M |{Di})|MV , C(MV)) using the kriging covariances

as shown in equation (14). For i ∈ I,

Varµ1
(EXi

(fi(Xi)|fi) |MV , C(MV)) = 0. (15)

Our uncertainty about {fi} again leads to uncertainty about the calculation

of M . The variance about M due to this uncertainty in the emulation is, from

(6),

Eµ2

(

Var{fi}(M |{Di})
)

|MV , C(MV)
)

=

n
∑

i=1

αi
2Eµ2

(Varfi
(EXi

(fi(Xi)|fi) |Di)) |MV , C(MV)) . (16)

For i ∈ I, the expectation on the right of equation (16) is found using the posterior

mean from the kriging. Equations (14) and (16) give our uncertainty about M

10

due respectively to interpolation and emulation. We will label their sum VarInt,

which measures the total uncertainty in M due to imperfect computation.

We must consider what value we expect V to take. Since V is variance due

to our uncertainty about the inputs, we will label this expectation VarInp. From

(7), it is

Eµ3

(

E{fi}(V |{Di})
∣

∣VE, C(VE)
)

=

n
∑

i=1

αi
2Eµ3

(Efi
(VarXi

(fi(Xi)|fi)|Di)| VE, C(VE))

+ 2
n−1
∑

i=1

n
∑

j=i+1

αiαjCij, (17)

where for i 6= j

Cij = Eµ3

(

Efi,fj

(

CovXi,Xj
(fi(Xi), fj(Xj)|fi, fj)

∣

∣Di,Dj

)∣

∣VE, C(VE)
)

. (18)

For i = j, we will also define

Cii = Eµ3
(Efi

(VarXi
(fi(Xi)|fi)|Di)| VE, C(VE)) .

A strategy for computing the terms Cij for i 6= j both in I is given in Section 2.2

around equation (8). For i = j, Cii is obtained from the kriging function µ3. Let

C be the matrix with elements Cij and denote by CI the submatrix corresponding

to i, j ∈ I. We need values for the off-diagonal elements Cij of C outside CI . We

specify these using the simple assumption Cij = ρ
√

CiiCjj. We choose the value

of ρ such that, if the same assumption were used for the off-diagonal elements of

CI then the sum of all these elements would be unchanged. This construction

will be reasonable when we believe that correlation is broadly stable between

pairs of functions.

This completes the analysis of uncertainty due to both emulation and interpo-

11

lation. In the presence of input uncertainty alone, our estimate of Y would be M ,

and the uncertainty around that estimate would be given by V . Allowing also for

emulation and interpolation uncertainty, we estimate M by equation (12); this

is also our estimate of Y . Uncertainty about M due to emulation uncertainty

alone would be given by (6), which we estimate (since we also have interpolation

uncertainty) by (16). Interpolation adds further uncertainty about M in the form

of (14). The sum of these last two components is the total uncertainty about M

due to imperfect computation. Finally, we estimate V by equation (17).

If the emulation and interpolation methods have been effective, the sum of

(16) and (14) will be small relative to V , and its square root will be small relative

to M .

3 Aggregation for NBP

The preceding theory underlies the analysis in Kennedy et al. (2007), but there

are a number of differences that we now address. In Kennedy et al. (2007), the

linear combination of computer code outputs is

Y =
707
∑

k=1

4
∑

t=1

akγt(yk)ftk(xtk), (19)

where k is the site number, each site’s coordinates are given by the vector yk, t

is the plant functional type (PFT) index, ak is the area of site k, γt(yk) is the

proportion of PFT t at site k and ftk(xtk) is the computer code NBP output of

PFT t at site k for input xtk. The true inputs to the computer code for each

site and PFT are unknown. As shown in equation (19), we have 707 sites and 4

PFTs. There is a single computer code, the dynamic vegetation model, which is

run 2828 times with different combinations of a large number of inputs in order

to produce all these values. However, for our purposes we regard each ftk as a

different unknown function, as if produced by a different computer model. This

12

is because it would be impractical to try to build an emulator for the DVM over

the very large input space, and in effect by building an emulator for ftk we are

emulating the DVM over the much smaller part of the space needed to represent

uncertainty in the inputs xtk for PFT t at site t.

Even then, it would require an unfeasible number of DVM runs to build

2828 emulators. We performed just a limited number of runs for various input

combinations at just 33 out of the 707 sites. At the 33 sites, we have data for all

four PFTs. The ftk(xtk) are unknown except at these 33 sites and input values.

This places us broadly in the situation that was analysed in Section 2.3.

We have a double summation in (19), but we could represent this as a single

summation as in (1), with the index i running over all 2828 pairs (t, k). However,

although the sites have a spatial structure that could be exploited as in Section

2.3, the (t, k) pairs do not. Furthermore, there is interest not just in the grand

total Y but also in the site NBF aggregated over PFTs,

Y·k =
4
∑

t=1

γt(yk)ftk(xtk), (20)

and in each PFT’s contribution to the total NBP, aggregated over England and

Wales,

Yt· =
707
∑

k=1

akγt(yk)ftk(xtk). (21)

Although the methods developed in the preceding section do not apply to the

double summation, they apply to a single summation over t or over k, and this

gives us two ways to quantify uncertainty in Y . We can first analyse the un-

certainty in each Y·k and then in Y =
∑707

k=1 akY·k. Alternatively, we could first

analyse the uncertainty in each Yt· and then in Y =
∑4

t=1 Yt·. In this section, we

consider these issues.

13

3.1 Making the maps

Kennedy et al. (2007) present maps (their Figure 7) of the mean and standard

deviation of Y·k over England and Wales. For each of the 33 sites at which we have

emulators, this is straightforward using the theory of Section 2.2 since we have

emulator data for each of the four PFTs. Indeed, Appendix C of Kennedy et al.

(2007) presents closed forms for the integrals needed to do this. (Note that the

methods of Appendix C require emulation data to be available for each function;

the claim there that the methods apply to aggregation over sites is an error that

slipped through the checking and proof reading of that paper, the methods apply

instead to aggregation over PFTs at the 33 sites for which we have such data.)

We might then complete the maps by kriging the means and variances, as

discussed in Section 2.3. However, this is not a good way to proceed because

these site aggregates do not vary smoothly over the country. This is because the

land cover, represented by the γt(yk), is not smooth. Instead, we chose to do the

kriging on each PFT separately. Figure 3 of Kennedy et al. (2007) shows maps

of the standard deviations for each PFT. Their Figure 2, however, shows another

way in which their analysis differs slightly from the general approach presented

here. Instead of kriging the estimated NBP values at each site, we applied kriging

to the difference between these estimates and the plug-in estimates. The distinc-

tion is explained in Kennedy et al. (2007), but in our notation consider the value

Ytk = ftk(Xtk) of the model output NBP at site k for PFT t and using the true

input values Xtk. We have uncertainty about this because of uncertainty about

Xtk, and the expectation with respect to this uncertainty is Mtk = EXtk
(Ytk). Be-

cause we also have emulation uncertainty, the estimate of Ytk is the expectation

of Mtk with respect to the emulator distribution of ftk. The plug-in estimate is

just ftk(x
?
tk), where x?

tk = EXtk
(Xtk) is the expected value of the uncertain input.

The plug-in value is the naive user’s ‘best estimate’ of the model output obtained

by using (‘plugging in’) the best estimate of the model inputs, and is available

14

at every site for every PFT. The difference between this plug-in estimate and

the expected output, taking account of uncertainty, is called the correction in

Kennedy et al. (2007), and it is the corrections that are interpolated by kriging

in their Figure 2. We then estimate NBP at each site for each PFT by adding

the interpolated correction to the plug-in estimate.

To aggregate these maps across the four PFTs, we need to evaluate covariances

between the values for different PFTs at a given site, which was again done using

kriging. Details are given below.

3.2 Aggregating over sites

The aggregation over sites for a given PFT follows exactly the procedures de-

scribed in Section 2.3. In particular, the estimate of Yt· is obtained using equation

(12), the components of variance in this estimate due to emulation and interpo-

lation uncertainties are given respectively by (16) and (14), and the estimated

variance due to input uncertainty by (17).

We then need to aggregate over PFTs to obtain the corresponding analysis

for Y =
∑4

t=1 Yt·. The estimate is of course just the sum of the estimates of Yt·.

The variance due to input uncertainty is

VarX(Y |{ftk}) = VarX(Y1· + · · · + Y4·|{ftk}) (22)

=
4
∑

t=1

VarXt
(Yt·|{ftk}) + 2

3
∑

t=1

4
∑

t′=t+1

CovXt,Xt′
(Yt·, Yt′·|{ftk}, {ft′k})

=
4
∑

t=1

Vt + 2
3
∑

t=1

4
∑

t′=t+1

CovXt,Xt′
(Yt·, Yt′·|{ftk}, {ft′k}).

Section 2.3 gives the formula for Eµ3

(

E{ftk}(Vt|{Dtk})
)

|VE, C(VE)
)

provided

that we assume the between site correlations to be fixed for all sites for each

15

PFT. We must now consider the covariance between Yt and Yt′ :

CovXt,Xt′
(Yt·, Yt′·|{ftk}, {ft′k}) =

707
∑

k=1

707
∑

j=1

akγt(yk)ajγt′(yj)ECt,t′

=
707
∑

k=1

707
∑

j=1

akγt(yk)ajγt′(yj)CovXtk,Xt′j
(ftk(Xtk), ft′j(Xt′j)|ftk, ft′j). (23)

Emulators at different sites are assumed to be independent so equation (23)

becomes

CovXt,Xt′
(Yt·, Yt′·|{ftk}, {ft′k}) =

707
∑

k=1

ak
2γt(yk)γt′(yk)ECt,t′

=
707
∑

k=1

ak
2γt(yk)γt′(yk)CovXtk,Xt′k

(ftk(Xtk), ft′k(Xt′k)|ftk, ft′k), (24)

which can be calculated at sample sites using equation (8). These results can

then be extended to non-sample sites using kriging. Hence, we krige six inter-

PFT covariances, given by ECt,t′
, that we have calculated at the 33 sample sites

using the same kind of technique that was described in Section 2.3.

The assumption of independence between emulators was validated by build-

ing a multivariate emulator of multiple outputs using the theory of Conti and

O’Hagan (2007). It was found that the correlation between emulators was small

provided the emulation was sufficiently accurate. In this case, the emulators were

deemed to be accurate enough to assume independence.

3.3 Results

We can use the method described in this paper to create an estimate for Y and

to quantify the uncertainty about Y from the two sources: uncertainty about

the code at different sites and uncertainty about the true code inputs. Table 3

of Kennedy et al. (2007) presents the plug-in estimates, the mean estimates

16

accounting for the various sources of uncertainty, and the overall variance, for

each PFT and for the aggregate over PFTs.

Table 1 below extends those results to show the variances separated into two

components. VarInt is the variance due to emulation and interpolation, while

VarInp is the estimated variance due to input uncertainty. In principle, the first

of these can be reduced by doing more accurate computation, which in the present

case would mean doing more runs to increase the accuracy of each of the 33 × 4

emulators that we built (reducing emulation uncertainty) or building emulators

at more sites (to reduce interpolation uncertainty). The aim is for VarInt to be

small relative to VarInp and for its sqare root to be small relative to the mean.

We see that this has been achieved for the overall total and for the Grassland

and ENL PFTs, but that VarInt is perhaps not as small as we would like for the

other two PFTs.

The computations with the DVM needed to carry out the analysis described

here are already very substantial, and it would not be practical to increase them.

It is important to be aware that the emulation methodology is already very much

more efficient than more traditional Monte Carlo computation, and that it would

not have been possible obtain even the accuracy achieved here without emulation.

Despite the remaining imprecision, Kennedy et al. (2007) succeed in estimating

the total NBP in England and Wales in 2000 with sufficient accuracy to show

the substantial bias in the plug-in estimates, and have identified the relative

magnitudes of the contributions of each of the PFTs to that total.

4 Uncertainty in soil inputs

Table 2 of Kennedy et al. (2007) lists the normal distributions that were used to

represent beliefs about three input parameters of SDGVM: the percentage of sand

in the soil SS, the percentage of clay in the soil SC and the soil’s bulk density.

There is a clear link between the first two of these parameters as knowing one of

17

Table 1: Contribution to the mean and variance of total NBP from different
plant functional types and covariances between these types.

PFT Plug-in Mean VarInt VarInp VarTot

(MtC) (MtC) (MtC)2 (MtC)2 (MtC)2

Grassland 5.2793 4.6389 0.0090 0.2598 0.2689
Crop 0.8525 0.4454 0.0090 0.0248 0.0338
DBL 2.1319 1.6826 0.0048 0.0080 0.0128
ENL 0.7976 0.7807 8.801 × 10−6 0.0005 0.0005

Covariances 0.0010 0.0010
Total 9.0613 7.5475 0.0229 0.2941 0.3170

the percentages will put bounds on the size of the other. By using independent

normal distributions for these two parameters, we ignore this structure. In Table 2

of Kennedy et al. (2007), site 17 has the following distributions:

SS ∼ N(69.91, 163.47),

SC ∼ N(13.23, 52.70). (25)

If we treat these as independent, we get E(SS +SC) = 83.14 and V ar(SS +SC) =

216.17. The upper bound for SS + SC of 100% is below its expectation plus two

standard deviations; hence, there is appreciable probability of a percentage of over

100. In order to examine the impact of this, an analysis based on better-suited

distributions for SS and SC has been performed.

A Dirichlet distribution is a natural choice of distribution for these types of

parameters. The constraint that the percentages add to 100 can be automati-

cally included in the Dirichlet distribution. To use the Dirichlet distribution, we

introduce a third parameter: the percentage of soil that is not sand or clay SR

(SR = 100 − SS − SC). Hence, we have

{SS, SC , SR} ∼ Dir(αS, αC , αR), (26)

18

where

E(SI |αS, αC , αR) = 100
αI

α0

,

V ar(SI |αS, αC , αR) = 10000
αI(α0 − αI)

α2
0(α0 + 1)

,

α0 = αS + αC + αR. (27)

With this distribution, we have three hyperparameters to set: αS, αC and αR.

Values for these are selected using the means of SS and SC and the variance of SS

from Table 2 of Kennedy et al. (2007) (the variance of SC calculated using the

Dirichlet fit is similar to the variance reported in Table 2). After specifying values

for our hyperparameters, we have arrived at a joint distribution that upholds the

sum to 100 constraint.

The program we used to carry out the uncertainty and sensitivity analysis of

SDGVM, GEM-SA, only allows a joint distribution for the inputs that is product

normal or product uniform. In order to find normal distributions that reflect the

additional structure we have added by using the Dirichlet distribution, we use a

transformation of one of the parameters. If we set

PC =
100SC

(100 − SS)
(28)

and use properties of the Dirichlet distribution, we find that SS and PC are

independent with the following distributions:

SS/100 ∼ Be(αS, α0 − αS),

PC/100 ∼ Be(αC , αR). (29)

The distributions given in (29) can then be approximated by normal distributions

in the following manner:

1. The mode of the beta distribution is used as the mode of our approximate

19

normal distribution.

2. If the mode is less than or equal to 0.5, set the variance of our approximate

normal distribution so that the 1st percentiles match for both distributiions.

If the mode is greater than 0.5, set the variance of our approximate normal

distribution so that the 99th percentiles match for both distributiions.

The second step here helps to reduce the probability of the parameter going

outside its bounds.

For site 17, we find the following normal approximations:

SS ∼ N(73.95, 70.56),

PC ∼ N(36.29, 205.35). (30)

The normal approximation for SS given in (30) gives a probability of less than

0.001 of SS falling outside the range of 0–100%. The variable PC has been con-

structed to prevent SC being a value that will make SS + SC at most 100%

provided SS is at most 100%. However, PC must still be in the range 0–100%;

the normal approximation in (30) gives a probability of 0.006 of PC falling outside

the range, which is makes it very unlikely.

Repeating the uncertainty analysis for site 17 using the new normal distribu-

tions, the biggest differences are found for grassland. There is a 0.5% increase

in mean NBP and a 8% increase in the standard deviation of NBP. This is the

greatest change at any site using the normal approximation of the Dirichlet dis-

tribution. Also, the mean of NBP and the standard deviation of NBP decreases

at some sites. The change to the approximate Dirichlet would make very little

difference to the overall figures presented in Table 3 of Kennedy et al. (2007).

There is only likely to be a relatively small decrease in the variance due to the

extra constraint that the Dirichlet distribution puts on the parameters.

20

References

Conti, S. and O’Hagan, A. (2007). Bayesian emulation of complex multi-
output and dynamic computer models. Research report 569/07, Department
of Probability and Statistics, University of Sheffield. Submitted to Journal of
Statistical Planning and Inference.

Cressie, N. (1993). Statistics for Spatial Data (rev. ed.). New York: Wiley.
Kennedy, M.C. (2004). Description of the Gaussian process model used in

GEM-SA. GEM-SA help documentation.
Kennedy, M.C., Anderson, C.W., O’Hagan, A., Lomas, M.R., Wood-

ward, F.I., Gosling, J.P. and Heinemeyer, A. (2007). Quantifying uncert-
ainty in the biospheric carbon flux for England and Wales. To appear in
J. R. Statist. Soc. Ser. A.

Matheron, G., (1971). The theory of regionalized variables and its applications.
Cahier du Centre de Morphologie Mathematique, 5. Fontainebleau, France.

Oakley, J.E. and O’Hagan, A. (2002). Bayesian inference for the uncertainty
distribution of computer model outputs. Biometrika, 89, 769–784.

O’Hagan, A. (1992). Some Bayesian numerical analysis. In Bayesian Statistics 4
(eds. Bernado, J.M. et al.), 345–363. Oxford: Oxford University Press.

21

