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Abstract

The Welch-Satterthwaite approximation is a simple and well-known approach to the Behrens-
Fisher problem of inference about a sum of normal means with unequal variances. It consists of
approximating the distribution of the corresponding sum of sample means divided by its estimated
standard error by a t distribution, with ‘effective degrees of freedom’ given by the Welch-Satterthwaite
formula. This approximation may then be used to construct an approximate confidence interval.
However, a paper published by M. Ballico in 2000 shows that the interval can become narrower when
one of the variances increases.

Ballico was working and publishing in the field of metrology, where the Welch-Satterthwaite
approximation is widely used to construct confidence intervals, but this anomalous behaviour seems
to be unremarked in the mainstream statistics literature. We prove that the anomaly can arise
whenever one sample size is less than seven. The result has serious implications for metrology, where
small sample sizes are common, and we believe it deserves to be more widely known wherever the
Welch-Satterthwaite formula is used.

1 Introduction

Given m > 1 samples of data xij , i = 1, . . . ,m, j = 1. . . . , ni, assumed to be independent and normally
distributed as xij ∼ N(µi, σ

2
i ), with unknown µi and σi, consider frequentist inference about a linear

combination of means θ =
∑m
i=1 aiµi. By scaling the variables, we can set ai = 1 without loss of

generality and define

θ =

m∑
i=1

µi .

The standard frequentist estimator t =
∑m
i=1 x̄i is unbiased with variance estimated by

u2 =

m∑
i=1

u2i , (1)

where x̄i =
∑ni

j=1 xij/ni, u
2
i = s2i /ni and s2i =

∑ni

j=1(xij − x̄i)2/(ni − 1).

However, construction of a confidence interval for θ is more problematic and several approaches have been
proposed [20]. A simple proposal [17, 18, 19], known as the Welch-Satterthwaite approximation (W-S),
is to treat (t− θ)/u as having a Student’s t distribution with ‘effective degrees of freedom’

d = u4

(
m∑
i=1

u4i
di

)−1
, (2)

where di = ni − 1 is the degrees of freedom of the i-th sample. Then an approximate frequentist 95 %
confidence interval for θ is t± k(d)u, where k(d) is the upper 97.5 % point of the Student t distribution
with d degrees of freedom.
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The validity of W-S has been called into question by Ballico [2], who found that in some circumstances
increasing one of the sample variances s2i led to a reduction in the width of the confidence interval for θ.
We refer to this behaviour as anomalous because increasing the uncertainty in the data logically should
not reduce uncertainty in θ. Hall and Willink [12] acknowledge the anomaly but claim that even when it
arises W-S remains a good approximation in the sense that the coverage of the nominally 95 % confidence
interval is close to 95 %.

We present the examples from these authors in Section 2 and provide what we believe to be the first
theoretical study of the W-S anomaly by proving explicitly in the case m = 2 that it arises whenever one
sample size is less than 7 and the variance parameter for the other sample is sufficiently small. We further
show that the anomaly arises for any m whenever any sample size is less than 7. We also consider the
defence of W-S by Hall and Willink and discuss why, while it may be true that the coverage of intervals
obtained using W-S is close to nominal, the existence of the anomaly remains a serious concern.

Both these authors were writing in the context of metrology, where W-S is widely used, and where the
half-width of the W-S 95 % confidence interval

U = k(d)u

is referred to as the expanded uncertainty. Also, following terminology in metrology, we will refer to the
individual mean parameters µi as inputs and to θ as the measurand. In Section 3 we introduce metrology
and the importance of W-S in that field. We consider the practical significance of the anomaly for
metrology, and point out that in many applications, including the Ballico and Hall and Willink examples,
the assumptions of W-S do not apply.

Section 4 concludes that the anomaly is an intrinsic problem for W-S and in our opinion renders it unfit
for purpose.

2 The Welch-Satterthwaite anomaly

2.1 The Ballico examples

To introduce the W-S anomaly, Ballico presents the example which first drew it to his attention. His
example has m = 5 inputs and consists of two cases, the second of which differs from the first only in
that the uncertainty ui for two inputs is much larger than in the first case, seven times larger for the
third input and ten times larger for the fifth. His data are shown in Table 1.

Table 1: Ballico’s 5-input example

Input i di ui Case 1 ui Case 2

1 3 12 12
2 8 2 2
3 20 1 7
4 50 0.5 0.5
5 50 0.3 3

Applying the W-S approximation for Case 1 we have u = 12.22, d = 3.23, k(d) = 3.06 and hence
U = 37.40. In Case 2 we have u = 14.36, d = 6.05, k(d) = 2.44 and U = 35.08. Thus, increasing
uncertainty in inputs 3 and 5 has nevertheless led to a smaller expanded uncertainty for the measurand.
The larger ui values necessarily lead to an increase in u, but the root of the anomaly lies in the W-S
formula, which gives a higher effective degrees of freedom d and hence a smaller k(d). The reduction
in k(d) is sufficient to offset the increase in u.

We are not aware of this anomalous behaviour having been reported in the mainstream statistics literature.

Ballico pointed to the fact that input 1 had the greatest uncertainty but had only 3 degrees of freedom
and asserted that it is in circumstances like these that the anomaly arises. He went on to present a
second example with m = 2 input quantities, to highlight the anomaly in a simpler context. In this
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example, u1 = 1, d1 = 3 or 4 and d2 is large, effectively infinite. He plotted the value of U as a function
of u2. The plot for d1 = 3 is shown in Figure 1. We see that U decreases as u2 increases for all u2 less
than about 0.6.

Figure 1: Anomalous behaviour of expanded uncertainty in a two-sample example

Ballico suggests, presumably on the basis of exploratory computations, that this anomaly occurs whenever
one input has large uncertainty but low degrees of freedom, while the other has small uncertainty but
high degrees of freedom. However, he does not go beyond these qualitative conclusions and presents no
theoretical arguments.

2.2 The Hall and Willink example

Ballico’s second example, as shown in Figure 1, demonstrates the anomalous behaviour as u2 increases
from zero, but in practice both u21 and u22 are random variables whereas it is the underlying population
variances σ2

1 and σ2
2 that are fixed. In their example, Hall and Willink compute the expected value of

the expanded uncertainty, which we denote by M = E(U), by sampling from the underlying normal
distributions, for various values of σ2

2 .

In their example, m = 2, σ1 = 2, d1 = 3, d2 is infinite and σ2 varied from 0 to 2. Table 2 gives their
computed values of M and the coverage probability of the implied W-S 95 % confidence interval for
various values of σ2. We see the anomalous behaviour with M decreasing as σ2 increases from 0 to 0.2
and 0.4.

Table 2: Hall and Willink’s example

σ2 M Coverage

0.0 2.93 0.9504
0.2 2.86 0.9403
0.4 2.77 0.9353
0.6 2.80 0.9384
0.8 2.87 0.9424
1.0 3.04 0.9450
1.2 3.27 0.9473
1.4 3.53 0.9489
1.6 3.82 0.9493
1.8 4.13 0.9499
2.0 4.46 0.9499
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The coverage of the W-S interval is shown to be less than the nominal 95 % for all σ2 > 0, reaching a
low point of about 93.5 %. Hall and Willink argue that this is sufficiently close to the nominal coverage
for W-S to be acceptable as a practical method for obtaining an approximate confidence interval. We
will return to this claim after examining the circumstances under which the anomaly arises.

2.3 Characterising the anomaly

We first consider the case m = 2, and note that in Figure 1 the expanded uncertainty decreases as u2
increases from zero to some point and then increases thereafter. The same behaviour is seen in Table 2
as σ2 increases, and we have observed this when the anomaly arises in our own numerical explorations.
We will begin by deriving an explicit condition for when the derivative is negative at the origin in the
case m = 2.

When m = 2 we have

θ = µ1 + µ2 , u2 = u21 + u22 , d = u4
(

u41
n1 − 1

+
u42

n2 − 1

)−1
.

The expanded uncertainty
U = k(d)(u21 + u22)1/2

is a function of the two random variables u21 and u22, which have independent chi-square distributions:
u2i ∼ {di(di + 1)}−1σ2

i χ
2
di
.

We will write u22 = w2
2σ

2
2 to show explicitly the dependence on the population variance σ2

2 . As σ2 increases
from zero for fixed w2 we effectively study Ballico’s anomalous behaviour of U as u2 increases, while by
taking expectations with respect to the distributions of u22 and w2

2 we study Hall and Willink’s anomalous
behaviour of M as σ2 increases.

The following results are proved in the Appendix.

U∗ = k(d1)u1 , (3)

M∗ = k(d1)[d1(d1 + 1)]−1/2σ1r0 , (4)
∂

∂σ2
U∗ = 1

2 (w2
2/u1)[k(d1) + 4d1k

′(d1)] , (5)

∂

∂σ2
M∗ = 1

2 [d1(d1 + 1)]1/2[σ1(d2 + 1)]−1(d1 − 1)−1r0[k(d1) + 4d1k
′(d1)] , (6)

where
r0 =

√
2

Γ((d1 + 1)/2)

Γ(d1/2)

and the superscript ∗ denotes a quantity evaluated at σ2
2 = 0.

Of particular note here are equations (5) and (6). Since k(ν) is a decreasing function of ν, k′(d1) is the
one negative term in these expressions, and in particular both ∂U∗/∂σ2 and ∂M∗/∂σ2 have the same
sign as k(d1) + 4d1k

′(d1). We find that this sign is negative for d1 = 1, 2, 3, 4, 5, but not for d1 ≥ 6. Thus,
the derivative of both U andM will be negative at σ2

2 = 0 whenever n1 < 7. By symmetry, the derivative
with respect to σ2

1 will be negative at σ2
1 = 0 when n2 < 7.

Notice that when d1 < 7, ∂U∗/∂σ2 < 0 for all values of u1 and w2. The fact that ∂M∗/∂σ2 < 0 follows
immediately, and there is essentially no difference between Ballico’s exposition with these data fixed,
focusing on the behaviour of U , and Hall and Willink’s focus on the behaviour of M by averaging over u1
and w2.

Following Ballico, Figure 1 is plotted against u2 rather than u22, or equivalently against σ2 rather than σ2
2 .

This is why it does not show a negative derivative at the origin. For any function f ,

∂

∂σ2
f = 2σ2

∂

∂σ2
2

f =⇒ ∂

∂σ2
f∗ = 0 .

However,
∂2

(∂σ2)2
f = 2

∂

∂σ2
2

f + 4σ2
2

∂2

(∂σ2
2)2

f =⇒ ∂2

(∂σ2)2
f∗ = 2

∂

∂σ2
2

f∗ .
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Therefore, although the first derivative in Figure 1 is zero, the anomaly is seen because the second
derivative is negative.

Hall and Willink’s data in Table 2 were computed by Monte Carlo sampling. For their example,
equation (4) gives M∗ = k(3)r0/

√
3, where d(3) = 3.18245 and r0 =

√
2Γ(2)/Γ(1.5) = 2

√
(2/π).

Thus, M∗ = 2.932, agreeing with the number in Table 2.

We now address the case of m > 2. Let

µ2+ =

m∑
i=2

µi , u22+ =

m∑
i=2

u2i ,

and

d2+ = u42+

(
m∑
i=2

u4i
di

)−1
. (7)

Then it is straightforward to show that

θ = µ1 + µ2+ , u2 = u21 + u22+ , d = u4
(
u41/d1 + u42+/d2+

)−1
.

The case m > 2 can thereby be reduced to that of m = 2. Thus, if n1 < 7, the anomaly will arise
whenever u2+ is sufficiently small.

Ballico asserted that the anomaly arises when one sample size is sufficiently small, without specifying
how small it had to be, and also in his examples the other sample size(s) were large. We have shown that
it arises when one of the m sample sizes is less than 7, regardless of the other sample sizes.

2.4 W-S coverage

The value of U at σ2
2 = 0, equation (3), is the expanded uncertainty for a single sample. It does not rely

on the W-S approximation and provides an exact 95 % confidence interval for θ. (The number 0.9504
in Table 2 suggests that Hall and Willink’s Monte Carlo sample size was not large enough to guarantee
accuracy to the full number of digits quoted.) The result of the anomaly, then, is that as σ2

2 increases
from zero, we have more uncertainty in the data-generating process but the expected W-S interval is
shorter. Therefore, the coverage of this interval must be less than the nominal 95 %. And as σ2

2 continues
to increase the coverage continues to decrease as long as the interval is shrinking. Table 2 shows not only
this effect but also that the coverage remains below the nominal 0.95 for a substantially wider range of
σ2
2 values

Hall and Willink give only the one example, in which the coverage does not fall below 93.5 % but
Guthrie [11] finds that it can be lower than 88 %. We have also found instances in which the cover-
age is less than 90 %. We do not have theory to show how far below the nominal 95 % the true coverage
can be.

We also note that if either sample size is less than seven the user will know that the coverage of the W-S
interval may be less than 95 %. The related phenomenon of relevant or recognizable subsets [16], whereby
the user knows that when the data fall into some subset of the sample space a confidence interval has
less or more than the nominal coverage conditionally, is regarded as a highly undesirable property.

Overall, we find Hall and Willink’s defence of W-S unconvincing.

3 Welch-Satterthwaite in metrology

3.1 Metrology and the GUM

Metrology is the science of measurement. From the national metrology institutes, which conduct research
into novel and improved measurements, to some 100 000 accredited testing and calibration laboratories
worldwide, metrologists are concerned with making accurate measurements of all kinds. Measurement is
an essential part of human activity. Estimates of quantities are required for a diverse range of applications
and for each of these estimates a statement is needed about its quality. Such a statement is usually
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made with measurement uncertainty. The two components, the estimate and the associated uncertainty,
together constitute a common way of reporting a measurement result [7].

Measurement uncertainty plays an important role in many areas such as assessing compliance with reg-
ulation, and in the calibration of measuring systems. Accredited calibration and testing laboratories
are obliged [1] to state the uncertainty of their measurement results, so that recipients can take that
uncertainty into account when evaluating their own results.

The Joint Committee for Guides in Metrology (JCGM) is responsible for maintaining and promoting
the use of the Guide to the expression of uncertainty in measurement (GUM) [5] and the International
vocabulary of basic and general terms in metrology (VIM) [7]. The GUM (JCGM 100) has for a long
time been the authoritative document concerned with the evaluation and expression of measurement
uncertainty that attempts to meet this objective:

This Guide establishes general rules for evaluating and expressing uncertainty in measurement
that can be followed at various levels of accuracy and in many fields — from the shop floor to
fundamental research. Therefore, the principles of this Guide are intended to be applicable
to a broad spectrum of measurements . . .

The GUM and its statistical methods for assessing measurement uncertainty are used daily in thousands of
laboratories around the world. Although little known in the mainstream statistical community, metrology
is a major application area for statistics.

The GUM uses the concept of standard uncertainty, which is specifically defined [5, clause 2.3.1] as the
‘uncertainty of the result of a measurement expressed as a standard deviation’.

The GUM also advocates the use of coverage intervals having a specified probability of covering the true
value of the measurand. Although it is sometimes reasonable to suppose that the range x ± 2u, where
x is the estimate and u the standard uncertainty, will have approximately 95 % coverage, particularly
when the measurement is based on a large sample of data, small samples are routinely used in practice.
The GUM introduces the expanded uncertainty [5, clause 6.2] U = ku, where k is a coverage factor usually
chosen such that x± U is a 95 % interval.

The GUM treats measurement as in general involving a measurement model relating the measurand (the
quantity intended to be measured) Y to input quantities Xi:

Y = f(X1, . . . XN ).

Knowledge of Y can be determined given f and knowledge of the Xi. Typically, the GUM itself requires
estimates xi of the Xi, associated standard uncertainties u(xi) and possibly covariances between the Xi.

We first consider a measurement that fits the model of Section 1. That is, the measurand Y is a linear
combination of m quantities Xi, which are themselves evaluated from independent normal samples.
Formally, we identify the value of the quantity Xi with the mean parameter µi of its sample. As in
Section 1, we assume without loss of generality that the linear combination is a simple sum, so that we
identify the value of the measurand Y with the sum of means θ.

For a linear measurement model, the GUM [5, clause G.4.1] recommends the use of the Welch-Satterthwaite
approximation as in Section 1 to obtain an approximate expanded uncertainty

U = k(d)u

for the measurand. The significance of U in metrology goes beyond its role in determining a 95 % coverage
interval. The authors [9] have argued that a more meaningful expression of uncertainty in the measurand
than the standard uncertainty u is the characteristic uncertainty, which in this case is defined as half the
expanded uncertainty. Thus, U may be seen as having an even more fundamental role in determining a
measure of uncertainty.

The routine use of the W-S approximation in metrology is not restricted to measurements that fit the
model of Section 1, namely the case of a linear measurement model and input quantities evaluated from
normal samples.

• If the measurement model is not linear in the Xi the GUM [5, clause 5.1.2] recommends linearising
the model by a first order Taylor series expansion.
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• If the individual sample observations xij are not normally distributed, the GUM [5, clause G.2.1]
invokes the Central Limit Theorem (CLT) to treat the sample means x̄i as normal.

• If inputs are evaluated by means other than through samples, the W-S approximation may still be
used as discussed in Section 3.3.

Although the JCGM has produced two documents on the propagation of probability distributions in
models that are not necessarily linear and with data that are not necessarily normally distributed
(JCGM 101 [8] for a single measurand and JCGM 102 [6] for multivariate measurands), by far the
most common practice in metrology is to use the recommendations of the GUM itself.

3.2 Significance of the anomaly in metrology

The W-S approximation is therefore very widely used in metrology and, because of the expense involved
in taking each individual observation, sample sizes as small as three or four are very common. Ballico
reports that the anomaly was drawn to his attention in a practical measurement problem with five input
quantities. In this instance, two related measurands were being measured with the same measurement
model and with shared evaluations of some of the inputs, a situation that made it possible for the anomaly
to be noticed.

In practice, the anomaly will typically go unnoticed, but when one sample size is less than seven and
uncertainty in another input is sufficiently small its consequences are nevertheless real:

• the W-S 95 % interval will have less than 95 % coverage, and

• the characteristic uncertainty will be too small, giving an over-optimistic expression of uncertainty
in the measurand.

Also, as noted in Appendix A.2, these consequences will follow even if the W-S approximation is used in
the context of non-normal observations by appealing to the CLT.

Furthermore, it is common in metrology for the measurement model to include both one or more inputs
that have been evaluated using small samples and other inputs that are corrections for potential biases
or rounding which are judged to have small uncertainty (in the sense of Type B evaluations, discussed
in Section 3.3). Therefore, the conditions for the W-S anomaly to arise are particularly prevalent in
this field, leading to the true coverage of the W-S 95 % interval being less than 95 % and the implied
uncertainty in the measurand being understated.

We know [11] that the coverage can be as low as 88 %, but even if, as Hall and Willink argue, the coverage
is generally not far short of the nominal 95%, the fact that we know in these circumstances that it has
less than the stated coverage means that in our opinion the use of W-S should be deprecated on principle.

3.3 W-S with Type B evaluations

In the GUM a distinction is made between Type A and Type B evaluation of inputs to a measurement
model. A Type A evaluation uses statistical methods to analyse observational data, and the most common
such evaluation in practice is the case we have been considering of a sample of observations that are either
assumed to be normally distributed or else the CLT is used to assume that the distribution of the sample
mean is normal. A Type B evaluation, however, uses a knowledge-based probability distribution for an
input quantity. The GUM [5, clauses E.3, G.4.2] asserts that both Type A and Type B evaluations can
be combined to give the estimate t and the standard uncertainty u of the measurand θ as in Section 1,
and furthermore that the W-S approximation may still be used to assign the expanded uncertainty U . In
order to do this for a quantity Xi that is subject to Type B evaluation, the metrologist makes judgements,
based on available data sources and his or her knowledge and expertise, to assign an estimate of Xi that
is treated as x̄i, a standard deviation that is treated as ui and a degrees of freedom di.

The GUM approach of combining Type A and Type B evaluations is enshrined in many procedures and
much software for measurement uncertainty evaluation since the GUM was first published in 1993. This
procedure is, however, highly controversial [10, 13, 14, 15]. Our position on the controversy is that Type B
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evaluation must be treated as being based on subjective probability, and that if Type A evaluations are
conducted using frequentist analysis of the observations then there is no formal justification for combining
Type A and Type B evaluations. The only logical and coherent way to proceed must be by using Bayesian
analysis in Type A evaluation, because then both the posterior probability distribution from a Type A
evaluation and the metrologist’s subjective probability distribution that constitutes Type B evaluation can
be combined using the standard laws of probability. W-S would have no place in such an approach [3, 4].
However, there is resistance in the metrology community to adopting a fully Bayesian approach [3] and
attempts have been made to justify the GUM’s recommendations, including by arguing that Type B
evaluations can be treated as if they represented frequentist probability statements. This is the position
taken by Hall and Willink in the example we discuss in Section 2.2. They suppose that in a Type B
evaluation of the input X2 it has been assigned a normal distribution, which is why they assign an infinite
degrees of freedom d2. Input X1, however, is evaluated from a sample of n1 = 4 normal observations
with variance σ2

1 = 4.

Their results shown in Table 2 were simulated by Monte Carlo, wherein at each iteration a sample of 4
normal observations is drawn for X1, but for X2 they draw a single normal observation from its Type B
distribution. We fail to see how this simulation can be justified, for two reasons. First, their sampling
does not fit the statistical model from which W-S is derived, which with infinite d2 would require in
principle a sample of infinite size. Instead, they take a single observation with variance σ2

2 , call this x̄2
and assign u2 = σ2. Second, x̄2 should be fixed, being the metrologist’s considered estimate of X2. It
is not a random quantity that can be sampled. By treating a Type B evaluation as if it were somehow
the result of a random process, Hall and Willink are ignoring the nature of Type B evaluation and the
principles of frequentist inference.

4 Conclusions

If we increase the error variance of observations, keeping all other elements of a statistical problem
unchanged, it does not make sense for inference about a parameter in that problem to become more
precise, in the sense that a confidence interval contracts. Yet exactly this anomalous behaviour can arise
when using the Welch-Satterthwaite approximation with small samples.

In support of observations of this anomaly that have been made in some practical circumstances, we
prove that the anomaly can occur whenever one sample size is less than seven.

When the anomaly arises, W-S 95 % intervals will have true coverage less than 95 %. Although Hall and
Willink assert that the shortfall in coverage is minor, they present only one numerical example in support
of their claim.

The width of a confidence interval is an important indicator of uncertainty, particularly in the field of
metrology where the problem was identified, and in this sense the anomaly results in an understatement
of uncertainty.

We suggest that the Welch-Satterthwaite formula should not be used when one of the contributing samples
has size less than seven and, since it is approximate, used with caution otherwise.
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A Appendix

A.1 Expected expanded uncertainty

In the case of two normal samples we have

θ = µ1 + µ2 , u2 = u21 + u22 , d = u4
(
u41/d1 + u42/d2

)−1
,

where d is the W-S ‘effective degrees of freedom’ for θ and di = ni−1 is the degrees of freedom for the i-th
sample. The half-width of the resulting W-S 95 % confidence interval is the expanded uncertainty:

U = k(d)(u21 + u22)1/2 ,

where k(d) is the upper 97.5 % percentage point of the Student’s t distribution with d degrees of freedom.
Our interest is in the behaviour of U and ofM = E(U), its expected value with respect to the independent
random variables u2i ∼ [di(di + 1)]−1σ2

i χ
2
di
.

In general, since U is a complex function of the u2i , it is not possible to obtain a closed-form expression
for M . However, we can obtain explicitly its value and derivatives at σ2

2 = 0.

To simplify the algebra, let
φ = σ2

2 , w2
2 = u22/φ .

Then U is expressed explicitly as a function of φ through

U = k(d)(u21 + φw2
2)1/2 ,

and
d = (u21 + φw2

2)2
(
u41/d1 + φ2w4

2/d2
)−1

. (8)

We will denote any quantity evaluated at φ = 0 with a superscript ∗, and hence

U∗ = k(d1)u1 .

When X ∼ χ2
k, E(Xm) = 2mΓ(m+ k/2)/Γ(k/2). Therefore

M∗ = k(d1)[d1(d1 + 1)]−1/2σ1r0 ,

where
r0 =

√
2 Γ((d1 + 1)/2)/Γ(d1/2) .

A.2 First derivative

We introduce the differential operator ∆ = ∂
∂σ2

2
= ∂

∂φ .

Rationalizing and differentiating expression (8),

∆d
(
u41/d1 + φ2w4

2/d2
)

+ 2 dφw4
2/d2 = 2w2

2(u21 + φw2
2).

Evaluating at φ = 0 gives
∆d∗ = 2d1w

2
2/u

2
1 ,

and we note that this is always positive. The fact that increasing uncertainty in the data can paradoxi-
cally increase the effective degrees of freedom is the root of the W-S anomaly, because increasing d will
decrease k(d).

Continuing the differentiation,

∆U = 1
2 k(d)w2

2(u21 + φw2
2)−1/2 + k′(d)(∆d)(u21 + φw2

2)1/2 ,

where k′(ν) = ∂
∂ν k(ν). Therefore,

∆U∗ = 1
2 (w2

2/u1)[k(d1) + 4d1k
′(d1)] .
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Since the operations of expectation and differentiation commute, we can now obtain the derivative of M
at φ = 0:

∆M∗ = 1
2 [d1(d1 + 1)]1/2[σ1(d2 + 1)]−1r1[k(d1) + 4d1k

′(d1)] ,

where
r1 = 2−1/2 Γ((d1 − 1)/2)/Γ(d1/1) = (d1 − 1)−1r0 .

Note that the above holds for d1 > 1, and hence for n1 > 2. If n1 = 2, r1 is infinite.

If the distribution of the observations xij with which the W-S approximation was introduced in Section 1
is not normal, then the u2i will not have chi-square distributions. However, as long as the distribution
of u22 admits of a scale parameter σ2

2 , so that the distribution of w2
2 is independent of σ2

2 , then the above
results will hold in the following sense: both U∗ andM∗ will be multiples of k(d1)+4d1k

′(d1), for fixed u21
and w2

2 or averaged with respect to those random variables, respectively.
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