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Summary: Historical information is always relevant for clinical trial design. Additionally, if incorporated in the

analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration,

facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data

may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical

data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined

analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version

requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose

two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter

exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually

vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction

to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical

prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case

of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios

show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial

with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts - they

should encourage better and more frequent use of historical data in clinical trials.
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1. Introduction

Randomized controlled clinical trials are the most appropriate way to investigate a new test

treatment in clinical research. These trials are usually evaluated based solely on study data.

However, historical trials in the same patient population have often been carried out with the

same control, e.g. placebo. In such settings, it seems attractive to use the historical control

data in the design and analysis of the new trial (Berry, 2006), as fewer patients can then be

randomized to control. This lowers both cost and trial duration, facilitates recruitment, and

may be more ethical in some situations.

Clinical trials with historical controls are used in earlier phases of drug development

(Neuenschwander et al., 2010; Trippa, Rosner and Müller, 2012; Hueber et al., 2012; DiScala,

Kerman and Neuenschwander, 2013; Gsteiger et al., 2013; Baeten et al., 2013), occasionally

in phase III trials (Schmidli, Bretz and Racine, 2007; French et al., 2012), and also in special

areas such as medical devices (FDA, 2010a), serious conditions (FDA, 2013) and pediatric

studies (Berry, 1989). In addition, proper use of historical information is critical for non-

inferiority trials (FDA, 2010b; Schmidli, Wandel and Neuenschwander, 2013). Clinical trials

where the control arm is entirely replaced by historical information are popular in phase II

oncology (Simon, 1989), but may lead to biases due to lack of randomization and blinding.

In a seminal paper, Pocock (1976) suggested a blinded, randomized and controlled design

for the new trial, where historical and concurrent controls are combined in the analysis. He

also proposed conditions for the relevance of historical trials, and provided an approach for

combining historical and concurrent controls. Several similar methods for combining histori-

cal and current data have been proposed since then, including Dempster et al. (1983), Ryan

(1993), Ibrahim and Chen (2000), Spiegelhalter, Abrams and Myles (2004), Neuenschwander

et al. (2010), and Hobbs et al. (2011, 2012). A common feature of the approaches is that

they discount historical data to account for between-trial heterogeneity.
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A major concern with the use of historical controls is prior-data conflict. Despite careful

selection of historical trials, past information may not be relevant for the new trial due

to unanticipated differences in study design, conduct or patient population (ICH 2000).

Irrespective of prior-data conflict, conjugate Bayesian analyses result in a pre-defined compro-

mise (Fuquene, Cook and Pericchi, 2009). For example, with normal endpoints and conjugate

priors, the posterior mean is a weighted average of prior mean and data mean. For well-

conducted clinical trials, prior-data conflict should be resolved by strong discounting of prior

information. Dawid (1973) and O’Hagan (1979) showed that the relative weights of the

tails of prior and sample distribution determine how conflict is resolved. Heavy-tailed priors

will eventually be discarded with increasing prior-data conflict. Considerable progress on

Bayesian heavy-tailed modeling and conflict resolution has been achieved in the past forty

years (O’Hagan and Pericchi, 2012). Of particular interest are mixture priors of conjugate

distributions as these can be concisely characterized and provide tractable analyses (O’Hagan

and Forster, 2004). These properties are important in biometric practice, as prior information

needs to be specified in clinical trial protocols and medical publications to facilitate review by

ethical committees, regulatory authorities and referees. The tractability of the analysis lowers

the hurdle for implementation, and allows a very fast evaluation of operating characteristics.

We consider here the use of historical controls in a meta-analytic framework. In particular,

we focus on the Bayesian version with a robust prior (derived from historical data) for the

control arm. The robust prior is a mixture prior with two components. The first component,

derived from historical data, is a meta-analytic-predictive (MAP) prior (Spiegelhalter et

al., 2004; Neuenschwander et al. 2010), which already provides better robustness than a

simple conjugate prior. However, the MAP prior is not available in analytical form. To allow

for a concise description of the prior and tractable posterior analysis we approximate the

MAP prior by a mixture of conjugate priors, with the Kullback-Leibler divergence as a
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measure of discrepancy. Any prior can be well described by such a mixture (Dalal and Hall,

1983; Diaconis and Ylvisaker, 1985), so that no relevant information is lost in this process.

The second (weakly informative) component of the mixture prior ensures further robustness

against prior-data conflict.

When designing a clinical trial, the number of patients allocated to control and test

treatment needs to be specified. If historical prior information is used, it is important to

know the prior effective sample size, i.e. the equivalent number of patients corresponding

to the prior information. While the prior effective sample size is well-defined for conjugate

priors, this is more difficult in general (Morita, Thall and Müller, 2008).

If the control data and the robust prior are in clear conflict, the prior information will

essentially be discarded in the posterior analysis. This may result in inconclusive trial results,

as not enough control information may then be available. Adaptive trials can minimize this

risk (Hobbs, Carlin and Sargent, 2013), since they allow to change features of the design

based on interim analyses (Berry et al., 2010). We will discuss a two-stage adaptive design,

where more patients are randomized to control in the second stage, if interim results suggest

prior-data conflict.

In Section 2, we first introduce the retrospective and prospective meta-analytic approach

and show that they are equivalent. We then focus on meta-analytic-predictive priors, describe

how they can be approximated by mixtures of conjugate priors, and how further robustness

can be achieved by adding an extra weakly-informative component to the prior. Finally,

the approximate prior effective sample size is discussed. Section 3 describes a two-stage

adaptive design with binary endpoints, and provides corresponding frequentist operating

characteristics. In Section 4, we illustrate the methodology and its practical implementation

for a phase II proof-of-concept trial. The article concludes with a discussion.



4 Biometrics, June 2014

2. Methods

2.1 Meta-Analytic Approaches to Incorporate Historical Data

We consider a new clinical trial comparing a test treatment with a control, and where relevant

historical data on the control group are available, which one aims to incorporate in the

analysis of the new trial. For the new trial, data and parameter are denoted by X? and φ? for

the test and by Y? and ψ? for the control treatment, respectively. For ease of presentation we

will assume that no nuisance parameters are present, and that no relevant prior information

on the test parameter φ? is available.

Denote the control data and parameters of the H historical trials by YH = (Y1, . . . , YH)

and ψH = (ψ1, . . . , ψH), where H = {1, . . . , H}. The structure of the control data suggests a

hierarchical model:

Yh|ψh ∼ F (ψh;nh) , ψh|η ∼ G(η) , η ∼ P (1)

where h ∈ H? = {1, . . . , H, ?}, n1, . . . , nH , n? are the sample sizes of the trials, and F , G,

P are the sampling, exchangeability (random-effects), and hyper-prior distribution, respec-

tively. The framework could be extended to accommodate study level covariates, so that

trials are then partially exchangeable.

Inference for the control parameter ψ? in the new trial will be based on direct (Y?) and

indirect evidence (YH). This can be done in two ways:

(i) by a meta-analytic-combined (MAC) approach. At the end of the trial, a meta-analysis

of all the control data will be performed, providing the inference for ψ? given all the data

by p(ψ?|Y?, YH),

(ii) or, by a two-step approach. At the design stage of the current trial, a meta-analytic-

predictive (MAP) prior p(ψ?|YH) is derived from the historical control data. Then, at

the end of the trial, the MAP prior is combined with the current control data Y? via

Bayes’ theorem: p(ψ?|Y?, YH) ∝ p(Y?|ψ?)p(ψ?|YH).
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The MAC and MAP analyses are equivalent for model (1), as the data are conditionally

independent, and do not involve the hyper-parameters (see Appendix). However, at the

planning stage of the new trial, only historical control data are available. This makes the

use of the two-step MAP approach particularly attractive, as then the prior information

on the control can be quantified in advance and influence the design. For example, fewer

patients may then be randomized to control. With prior p(φ?, ψ?|YH) = p(φ?)p(ψ?|YH), the

posterior is given by p(φ?, ψ?|X?, Y?, YH) = p(φ?|X?)p(ψ?|Y?, YH), from which the posterior

for the treatment effect can be derived.

2.2 Meta-Analytic-Predictive (MAP) Priors

We consider the planning of a new clinical trial, to compare a test treatment with a control,

where n? patients are randomized to the control group. The control data Y? are assumed

to follow a distribution from the regular one-parameter exponential family Y? ∼ F (ψ?;n?).

For example, if the endpoint is binary, the number of responders Y? follows a binomial

distribution with parameter ψ?; see Table 1 for other common endpoints.

[Table 1 about here.]

We suppose that several historical controlled clinical trials in the same patient population

are available, and that the control data Yh in trial h with nh patients is distributed as

Yh ∼ F (ψh;nh), h = 1, ..., H. (2)

The similarity of new and historical trials is expressed by exchangeable parameters θ =

g(ψ) (see Table 1)

θ?, θ1, ..., θH ∼ Normal(µ, τ 2) (3)

with population mean µ and between-trial standard deviation τ . For binary endpoints, the

logit-transformation g(ψ) = log{ψ/(1 − ψ)} is commonly used. Although we use a normal

distribution here, a more flexible random-effects distribution could also be considered.
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Finally, a prior distribution for the hyper-parameters is chosen as p(µ, τ) = p(µ)p(τ). For

the population mean µ a vague prior is used here, as data are sufficiently informative. More

care is needed for the between-trial standard deviation τ , especially with few historical trials.

Spiegelhalter et al. (2004), Gelman (2006), Polson and Scott (2012) discuss several priors and

recommend Half-T distributions, which include the Half-Normal and Half-Cauchy as special

cases. In the following, we will use Half-Normal priors, with standard deviations chosen such

that unrealistically large values of τ have small probability. Sensitivity analyses with various

realistic priors for τ can be useful, especially if fewer than four historical studies are available

(Gelman, 2006; Hobbs et al., 2012).

Based on model (2), (3) and the hyper-prior, the MAP prior distribution pH(ψ?) =

p(ψ?|Y1, ..., YH) for the control parameter in the new trial can be derived. Markov Chain

Monte Carlo (MCMC) can be used to generate a sample θ
(1)
? , ..., θ

(M)
? , and then ψ

(i)
? =

g−1(θ
(i)
? ).

A kernel-density estimate from the MCMC sample or a Rao-Blackwellized density estimate

(Gelfand and Smith, 1990; Web Appendix A) can be used to describe the MAP prior.

However, there are practical disadvantages both in the communication of such density

estimates and their use in the analysis of a new trial, as these density estimates have a

very large number of parameters. A parsimonious and convenient alternative approximation

are mixtures of conjugate priors. For example in the binary case, this mixture prior is

p̂H(ψ?) =
K∑
k=1

wkBeta(ψ?|ak, bk) (4)

with positive weights wk summing up to one.

Dallal and Hill (1983) as well as Diaconis and Ylvisaker (1985) have shown that any

prior can be closely approximated in this way. The number of components K, the mixture

weights and the hyper-parameters for each component must be specified, such that the

approximate prior is close to pH(ψ?). We consider here the Kullback-Leibler divergence, as
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this is arguably the most appropriate measure in pure inference problems (Bernardo and

Smith, 1994; O’Hagan and Forster, 2004). The Kullback-Leibler divergence from the exact

prior pH(ψ?) to the approximate prior p̂H(ψ?) is

KL(pH(ψ?), p̂H(ψ?)) =
∫
log{pH(ψ?)}pH(ψ?)dψ? −

∫
log{p̂H(ψ?)}pH(ψ?)dψ? (5)

The best approximation to the exact prior is obtained by choosing weights wk and hyper-

parameters of the conjugate priors such that the second term on the right in (5) is maximal,

which requires numerical optimization. It should be noted that a Monte-Carlo estimate of

the integral is given by 1/M
∑M
i=1 log{p̂H(ψ

(i)
? )}, using the MCMC sample from the posterior

distribution. This term is formally identical to the log-likelihood of the MCMC sample with

mixture model p̂H(ψ?). Hence, the weights and the hyper-parameters can be obtained as

maximum-likelihood (ML) estimates. The choice of the number of components can be based

on both numerical and graphical methods, and is further discussed in Section 4. In our

context, the prior is typically unimodal, and two to three components are usually sufficient

to adequately approximate the exact prior.

2.3 Robust MAP Prior

When considering the use of historical controls in a new trial, a careful selection of the histor-

ical trials is necessary to render the exchangeability assumption for the control parameters

plausible. Pocock (1976) proposed criteria for the selection process. Nevertheless, one has to

acknowledge the possibility of prior-data conflict. Hence we consider a robust version of the

MAP prior of Section 2.1, as

p̂HR(ψ?) = (1− wR)p̂H(ψ?) + wR pV (ψ?) , (6)

where p̂H(ψ?) is the approximated MAP prior, pV (ψ?) is a vague conjugate prior, and wR

is the prior probability that the new trial differs systematically from the historical trials.

The choice of wR could be based on the degree of confidence of the clinical trial team
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in the relevance of the historical data. Posterior summaries for several data scenarios or

operating characteristics may also be considered when selecting the weight given to the

vague component of the prior. The choice of wR in (6) will determine how quickly historical

information is discounted with increasing prior-data conflict. This second component must

be proper if one would like to interpret wR as a probability, and hence we use here weakly

informative priors. For binary endpoints, either Jeffreys’ or the uniform prior could be used,

or, for other endpoints, unit information priors (Kass and Wasserman, 1995).

Since the robust prior p̂HR(ψ?) is again a mixture of conjugate priors, the posterior

p̂HR(ψ?|y?) is also a mixture of conjugate posteriors, with updated mixture weights (Bernardo

and Smith, 1994). For binary endpoints, the robust prior is

p̂HR(ψ?) = (1− wR)
∑
k

wkBeta(ψ?|ak, bk) + wRBeta(ψ?|a0, b0) (7)

and the posterior is given by

p̂HR(ψ?|y?) = (1−w̃R)
∑
k

w̃kBeta(ψ?|ak+y?, bk+n?−y?)+w̃RBeta(ψ?|a0+y?, b0+n?−y?)(8)

where w̃R ∝ wRf0/{wRf0 + (1 − wR)
∑
k wkfk} and w̃k ∝ wkfk/{

∑
k wkfk} , and fk =

B(ak + y?, bk + n? − y?)/B(ak, bk) is proportional to the marginal probability, for k=0,...,K,

where B(a, b) is the Beta function. The corresponding marginal probabilities f for other

endpoints (disregarding proportionality constants) are shown in Table 1.

2.4 Effective Sample Size of the Robust MAP Prior

When designing a new clinical trial, fewer patients can be randomized to control by borrowing

strength from historical information. However, the prior effective sample size (ESS) needs

then to be quantified. For conjugate priors, the ESS is easily obtained for the exponen-

tial family (Bernardo and Smith, 1994), e.g. for binary endpoints ESS = a + b with a

Beta(a, b) prior. For non-conjugate priors, normal approximations can be used (Morita,

Thall and Müller, 2008, 2012; Neuenschwander et al., 2010). Here we apply the methodology
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by Morita et al. (2008). The ESS is the sample size such that the expected information of

the posterior under a non-informative prior is the same as the information of the informative

prior p(ψ?), where the information is evaluated at the mode ψ̃? of the informative prior.

The information of the prior is given by I = d2 log p(ψ?)/d ψ2
? |ψ?=ψ̃?

. The expected

information for the posterior with sample size m under a non-informative prior is EI0(m) =∫
{d2 log p0(ψ?|y?)/d ψ2

? |ψ?=ψ̃?
}p(y?)dy?, where p(y?) is the prior predictive distribution with

respect to the informative prior p(ψ?). The ESS is then the largest m such that EI0(m) < I.

For a conjugate prior, the ESS is the usual prior effective sample size.

3. Adaptive Design

We consider a clinical trial comparing a test treatment with a control, using a vague prior

for the test treatment and a robust MAP prior for the control. Fewer patients are here

randomized to control, as the robust MAP prior approximately corresponds to ESS control

patients (see Section 2.4). However in case of prior-data conflict, the robust MAP prior will

be discounted, and hence the information available at the end of the trial may then not be

sufficient for decision making; see Web Appendix B. Use of an adaptive design can reduce

this risk as described by Hobbs et al. (2013), and we use a similar approach in the following.

We propose a two-stage adaptive design, where m and n are the desired effective sample

sizes at the end of the trial for test treatment and control, respectively (e.g. m = n = 40).

The number of patients in the two stages are then

Stage 1: mI in test treatment and nI in control (e.g. mI = 20, nI = 15);

Stage 2: (m−mI) in test treatment and max(n− ESSI , nmin) in control (e.g. nmin = 5).

Here ESSI is the posterior effective sample size based on the first stage control data with

a robust MAP prior. If the interim control data and the robust MAP prior are consistent,

then ESSI ≈ ESS + nI . However, if prior and data are in clear conflict, then ESSI ≈ nI .



10 Biometrics, June 2014

The effective sample size at interim ESSI determines how many patients will be randomized

to control in the second stage (at least nmin). At the end of the trial, data from both stages

are used in the final analysis.

In a clinical trial setting, frequentist operating characteristics are typically used for evaluat-

ing adaptive trial designs (Berry et al., 2010). Computations are very fast, as the posteriors

can be calculated analytically when priors are mixtures of conjugate priors; see (8). For

illustration, we investigate a setting typical for proof-of-concept trials with binary endpoint,

where m = n = 40, mI = 20, nI = 15 and nmin = 5. We compare frequentist properties for

a uniform prior on the test treatment parameter φ?, and the following priors on the control

parameter ψ?:

(i) a simple conjugate prior: Beta(4, 16);

(ii) a two-component mixture prior (weight 0.9): 0.9×Beta(4, 16) + 0.1×Beta(1, 1);

(iii) a two-component mixture prior (weight 0.5): 0.5×Beta(4, 16) + 0.5×Beta(1, 1);

(iv) the uniform prior: Beta(1, 1).

Prior (i), a simple conjugate prior, is the method of choice in many Bayesian applications

with binary data. This prior could arise from an approximation of the MAP prior by a single

Beta distribution. Mixture priors (ii) and (iii) could arise in two situations: as a robust version

of prior (i), or, from a two-component mixture approximation of a MAP prior, where one

component is usually weakly-informative (small Beta parameters) due to the heavy tails of

the MAP prior. The prior effective sample sizes (Section 2.4) for the four priors are 20, 18, 11

and 2. The 95% prior probability intervals for the response rates are (0.06,0.40), (0.06,0.75),

(0.04,0.95) and (0.025,0.975), respectively.

Table 2 shows Type-I error and power properties of the two-stage adaptive design, where

study success will be declared if P (δ > 0|data) > 0.975, for treatment effect δ = φ? − ψ?. In

contrast to the informative conjugate prior (i), the mixture priors do not lead to an excessive
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increase of Type-I error. Also, the two-stage adaptive design with informative mixture priors

results in considerable savings in sample size compared to a design using vague priors. For

example, if historical and current control data are consistent, then on average 25-50% of

the 40 control patients can be replaced by historical information. It should be noted that

the operating characteristics depend upon the direction of bias induced by incorporating the

historical information.

[Table 2 about here.]

The frequentist properties of the Bayesian point estimate (posterior mean) for the control

at the end of the adaptive two-stage trial are also of interest. Figure 1 shows the root mean

squared error (rMSE) and bias for the three informative priors and the uniform prior. For

the conjugate informative prior (i), the number of control patients is always 20, while this

number varies between 20 and 40 for the two mixture priors (ii) and (iii). Hence for the

uniform prior (iv), we consider a fixed design with n = 20 or n = 40 control patients for

comparison. For rMSE the conjugate prior (i) and the mixture priors (ii) and (iii) offer

gains compared to the uniform prior with n = 40 control patients, if the true response rate

ψ? is in the range of prior support (roughly 0.10 to 0.35). These gains are achieved although

the designs with informative priors (i)-(iii) include considerably less than 40 control patients

(see Table 2). The gains compared to the uniform prior with n = 20 control patients are even

more impressive, if prior and data are consistent. In case of prior-data conflict (ψ? > 0.4),

the negative impact on rMSE for prior (i) is clearly much stronger compared to the robust

versions (ii) and (iii). For very clear prior-data conflict (ψ? > 0.8), the rMSE of the robust

priors (ii) and (iii) is slightly higher than for the uniform prior with n = 40 control patients,

but the corresponding adaptive designs also use slightly less control patients. Similar results

can be seen for bias, with a much better behavior for the mixture priors compared to prior

(i).
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[Figure 1 about here.]

In summary, the example suggests that an adaptive two-stage design with mixture priors

containing a weakly-informative component has good robustness properties. In a specific

application a decision about what is acceptable with regard to frequentist metrics is needed.

This includes careful judgment about how likely scenarios of prior-data conflict are.

4. Clinical Trial Example

To illustrate the methodology introduced in Section 2, we consider a proof-of-concept study

in ulcerative colitis (Neuenschwander et al., 2010). The primary outcome, remission after

eight weeks of treatment, is binary. Four relevant historical placebo-controlled trials with a

total of 363 placebo patients were identified, with remission rates in placebo ranging from

5.7% to 14.9% (Figure 2).

[Figure 2 about here.]

Based on the historical placebo data, the MAP prior for the remission rate in a new trial

was derived, using a weakly informative Half-Normal prior with a standard deviation of 1 for

the between-trial standard deviation τ , which puts approximately 5% probability for values

of τ greater than 2. A value of τ = 2 corresponds to very large between-trial variability

on the log-odds-scale, and would essentially lead to no borrowing from the historical data

(Spiegelhalter et al., 2004). Sensitivity analyses are provided in Web Appendix C. Figure

2 shows the MAP prior (Rao-Blackwellized density estimate, Web Appendix A) from an

MCMC sample of size M=100000, obtained with WinBUGS (Lunn et al, 2000).

The MAP prior is now approximated by a mixture of conjugate priors as in (4). Fitting

a single Beta density to this sample by ML does obviously not lead to a satisfactory

approximation (a1 = 2.3 and b1 = 16.0). A two component mixture of Beta densities
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considerably improves the fit (a1 = 6.2, b1 = 50.8; a2 = 1.0, b2 = 4.7; w1 = 0.77). The

mixture of three Beta densities

p̂H(ψ?) = 0.53×Beta(2.5, 19.1) + 0.38×Beta(14.6, 120.2) + 0.08×Beta(0.9, 2.8) (9)

fits the density estimate almost perfectly. The Kullback-Leibler divergence (5) quickly drops

towards zero with increasing numbers of components (Figure 2).

The first component in (9) is close to the ML estimate of the single Beta fit and has a

weight of more than fifty percent. The second component corresponds to a highly informative

peak centered around the same value as the first component (prior mean of 11%). Finally,

the third component of the mixture (mean 24%) is only worth about four patients and has

a low prior weight of eight percent. Since this third component is not very informative, the

prior p̂H(ψ?) is already fairly robust. If desired, further robustification can be achieved as

described in equation (7) by adding a Beta(1, 1) component with e.g. weight wR = 0.1 to

the mixture (9), which leads to

p̂HR(ψ?) = 0.48×Beta(2.5, 19.1) + 0.34×Beta(14.6, 120.2)

+0.07×Beta(0.9, 2.8) + 0.1×Beta(1, 1). (10)

We consider now a new trial with n? = 20 placebo patients. From Section 2.4, the ESS for

the two component mixtures without and with robustification are 47 and 37, respectively.

The ESS of the three component mixture (9) is 81, and 63 for its robust version (10).

Figure 3 shows the posterior mean and posterior standard deviation of the two and three

component mixtures and their robustified versions, for all possible values of the observed

response rate y?/20. For good agreement between new and historical data (y?/20 6 4/20,

say), the posterior means and standard deviations are very similar. For the range of potential

prior-data conflict (5/20 to 10/20), uncertainty is increased for the mixture priors. Finally,

under clear prior-data conflict (> 11/20), the informative parts in the mixture distributions

are strongly discounted, and the posterior means are close to the observed rates. Figure 3
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also shows the simple conjugate Beta(2.3, 16) prior for which posterior inference is clearly

not robust; see also Web Appendix D.

[Figure 3 about here.]

Table 3 compares various characteristics of the three component mixture with and without

robustification. Although the inference is similar for the two priors, the robustified version

discounts the conflicting prior information more quickly.

[Table 3 about here.]

Table 3 also shows the posterior ESS, which is very similar for the two priors. If prior and

data are consistent, the posterior ESS is approximately the sum of prior ESS and new sample

size n?. For scenarios of clear conflict, however, the posterior ESS decreases to n? = 20.

Therefore, the actual posterior effective sample size depends on the outcome of the new

trial in non-adaptive designs. This risk can be reduced with a two-stage adaptive design as

discussed in Section 3. For example if the results shown here would correspond to the first

stage, the patients allocated to control in a second stage could be increased if necessary.

The judgment whether a historical data prior and the new data are compatible can be

based on the prior predictive tail area probabilities (Box, 1980) given by P(Y > y?) =∫
P(Y > y?|ψ?)pH(ψ?)dψ?. Table 3 shows one-sided tail area probabilities (lower or upper,

whichever is smaller) calculated for p̂H and p̂HR.

5. Discussion

We proposed a meta-analytic-predictive (MAP) approach to derive the prior for the control

in the new trial from the historical control data. Heavy-tailed MAP priors imply a degree of

robustness against prior-data conflicts which is absent in simple conjugate analyses. Further

robustness and a more rapid adaptation to prior-data conflict can be obtained by adding

a weakly informative component. This additional component acknowledges the possibility
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to be mistaken, and hence is in line with Cromwell’s rule (Lindley, 2006): despite a careful

selection of the historical trials, the new trial may have some unsuspected features which

make it non-exchangeable to the historical trials.

To approximate the MAP prior, we have used mixtures of conjugate distributions. Alter-

native approaches to robust analyses could be considered, e.g. the use of t-distributions.

We have used weakly informative priors for the vague component of the mixture prior.

With such proper priors, the weight given to the vague component can be interpreted as a

probability, which would not be the case for improper ”flat” priors. Similar issues with the

use of improper priors occur in Bayesian testing with Bayes factors (Kass and Wasserman,

1995).

We have assumed that the parameters for the historical trials are exchangeable. The model

could be extended to allow for the possibility of conflict between the historical controls by

using a mixture distribution with a weakly informative component as the random-effects

distribution. However, if there is clear evidence of conflict between historical controls, then

use of this historical information would make the new trial less credible, and hence may

perhaps best be avoided. If there is conflict between historical controls and a normal random-

effects distribution is nevertheless assumed, then the predictive distribution for the new trial

will widen, and hence be less informative, so that the error is on the safe side. Alternatively,

nonparametric Bayesian approaches could be considered to model partial exchangeability of

trials (Leon et al., 2012; Müller and Mitra, 2013).

If historical and concurrent control data are in clear conflict, the prior will essentially

be discarded, if the MAP prior is robust. This may result in inconclusive trial results, as

not enough control information may then be available. Adaptive designs allow to increase

number of controls based on interim data, and hence reduce this risk (see also Hobbs et al.,

2013).
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We considered the case where several historical trials with control information are available.

In this setting, a meta-analytic approach seems particularly appropriate, as the between-trial

variability τ can then be assessed based on the data. For the case where only one historical

study is available, the challenging problem of a Bayesian meta-analysis with only two studies

(one historical, and one new) has to be addressed, in particular the choice of an appropriate

informative prior distribution for τ (Gelman, 2006). A good judgment about plausible values

of τ is important here, and may be obtained by elicitation from experts. Alternatively, a prior

on τ may be derived by considering information from related patient populations or similar

diseases (Higgins and Whitehead, 1996; Turner et al., 2012). Hobbs et al. (2011) suggested the

use of a commensurate prior to specifically address the case of one historical trial. However,

for this case, commensurate and MAP priors are the same (Hobbs et al., 2012). The power

prior (Ibrahim and Chen, 2000) has also been used to include prior information from one

historical trial. Typically the power parameter for the historical data is set to a fixed value,

which approximately corresponds to the fixing of the between-trial variability τ in the meta-

analytic model (Chen and Ibrahim, 2006). Although inference on the power parameter is

possible, a proper normalization is required (Neuenschwander, Branson and Spiegelhalter,

2009).

In this article, we described our approach for the common situation where historical

information on the control treatment is available, but not on the test treatment. If historical

data for the latter are available, a robust MAP prior can then also be used. In more complex

settings, meta-regression (Witte et al., 2011) or network meta-analytic models (Schmidli et

al., 2013) allow to derive prior information for both control and test treatment.

We focused our discussion on endpoints from the one-parameter exponential family. Ex-

tensions to other distributions including nuisance parameters are possible, although more

involved (see Web Appendix E). Nevertheless the key element of our proposal can be applied
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quite generally, namely the addition of a weakly informative component to the historical

prior, inspired by De Groot who always carried an epsilon of probability for surprise in his

pocket (Parmigiani and Inoue, 2006).

6. Supplementary Materials

Web Appendices A-E referenced in Sections 2-5 and code with example data are available

with this paper at the Biometrics website on Wiley Online Library.
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Appendix

It is shown that the meta-analytic-predictive (MAC) and the meta-analytic-combined (MAC)

approaches are equivalent for the model specified by (1) in Section 2.1. Equivalence of MAC

and MAP follows from

p(ψ?|Y?, YH) ∝ p(ψ?, ψH|Y?, YH)

∝ p(Y?, YH|ψ?, ψH)× p(ψ?, ψH)

= p(Y?|ψ?)× p(YH|ψH)× p(ψ?, ψH)

∝ p(Y?|ψ?)× p(ψ?, ψH|YH)

∝ p(Y?|ψ?)× p(ψ?|YH)

where ∝ denotes proportionality with regard to ψ?.
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Figure 1. Root mean-squared error (rMSE) and bias (in %) of the posterior mean of the
control response rate ψ? for (i) Beta(4,16) prior (black dotted line), (ii) 0.9× Beta(4,16) +
0.1× Beta(1,1) (black dashed line), and (iii) 0.5× Beta(4,16) + 0.5× Beta(1,1) (black solid
line). Also shown are rMSE and bias for a uniform prior with n = 20 (grey solid line) or
n = 40 (grey dashed line).
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Figure 2. Observed placebo remission rates from four historical ulcerative colitis trials with
95% intervals, MAP prior for the rate in a new trial (Rao-Blackwellized density estimate),
and one-, two-, and three-component Beta mixtures with corresponding Kullback-Leibler
divergence (KL div).
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Table 1
Sampling model, conjugate prior and posterior, marginal probability f (up to proportionality; see Section 2.3) and

transformed parameter θ = g(ψ) for some members of the one-parameter exponential family with sufficient statistics
n and ȳ. The nuisance parameter is assumed to be known for the Negative Binomial and Normal distribution.

Model F (ψ) Prior and Posterior f θ

Bernoulli(ψ) Beta(a, b) B(a+nȳ,b+n−nȳ)
B(a,b)

log{ψ/(1− ψ)}
Beta(a+ nȳ, b+ n− nȳ)

NegBin(ψ, r) Beta(a, b) B(a+nr,b+nȳ)
B(a,b)

log{ψ/(1− ψ)}
Beta(a+ nr, b+ nȳ)

Poisson(ψ) Gamma(a, b) Γ(a+nȳ)/(b+n)a+nȳ

Γ(a/ba
log(ψ)

Gamma(a+ nȳ, b+ n)

Exponential(ψ) Gamma(a, b) Γ(a+n)/(b+nȳ)a+n

Γ(a/ba
log(ψ)

Gamma(a+ n, b+ nȳ)

Normal(ψ, s2) Normal(m0, s
2/n0) exp{−0.5(ȳ−m0)2/(s2/n0+s2/n)}√

s2/n0+s2/n
ψ

Normal(n0m0+nȳ
n0+n

, s2/n0 + s2/n)
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Table 2
Type I error and power (%) under different control rates ψ? and treatment effects δ for four priors: Beta(4, 16)
(Beta), 0.5 ×Beta(4, 16) + 0.5 ×Beta(1, 1) (Mix50) , 0.9 ×Beta(4, 16) + 0.1 ×Beta(1, 1) (Mix90) , Beta(1, 1)

(Unif). Also shown is the expected sample size in the control group for the two mixture priors.

Control Treatment Effect Treatment Effect Expected sample
rate δ=0 δ=0.3 size control

ψ? Mix50 Mix90 Beta Unif Mix50 Mix90 Beta Unif Mix50 Mix90

0.1 0.6 0.1 0.0 1.8 92.0 81.4 81.6 89.7 27.6 20.0
0.2 2.5 1.5 1.6 2.3 88.4 85.7 87.8 82.1 25.5 20.3
0.3 3.9 5.5 6.1 2.4 83.0 88.4 93.4 79.5 28.5 21.2
0.4 4.2 10.4 13.7 2.6 76.7 86.8 97.9 79.5 33.5 23.2
0.5 3.4 12.3 26.0 2.8 77.5 85.4 99.6 81.9 37.4 26.9
0.6 3.0 9.5 44.4 2.6 86.4 89.7 100.0 89.8 38.9 31.8
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Table 3
Prior and posterior summaries for hypothetical trial outcomes y?/n?, for the three component mixture prior p̂H , and

its robustified version p̂HR. The last column gives the prior predictive tail probability (see text).

w1 w2 w3 w4 Mean 2.5% 97.5% ESS Prior pred.
prob. (%)

Prior p̂H 0.53 0.38 0.08 0.12 0.02 0.35 81

Posterior for y?/n?
0/20 0.62 0.30 0.08 0.07 0.01 0.15 78 14.9
2/20 0.50 0.46 0.04 0.11 0.04 0.20 110 59.6
5/20 0.59 0.31 0.11 0.17 0.08 0.33 74 13.7

10/20 0.25 0.01 0.74 0.42 0.20 0.64 14 1.5
15/20 0.004 0.00 0.996 0.67 0.47 0.84 24 0.3

Prior p̂HR 0.48 0.34 0.07 0.10 0.16 0.02 0.76 63

Posterior for y?/n?
0/20 0.60 0.29 0.08 0.03 0.07 0.01 0.15 76 13.9
2/20 0.49 0.45 0.04 0.02 0.11 0.04 0.21 108 55.1
5/20 0.54 0.28 0.10 0.08 0.18 0.08 0.37 69 20.0

10/20 0.11 0.00 0.32 0.56 0.46 0.23 0.69 20 6.6
15/20 0.00 0.00 0.16 0.84 0.72 0.51 0.88 22 3.1


