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Abstract

Science-based simulation models are widely used to predict the behavior of complex

physical systems. It is also common to use observations of the physical system to solve

the inverse problem, i.e. to learn about the values of parameters within the model, a

process often called calibration. The main goal of calibration is usually to improve the

predictive performance of the simulator but the values of the parameters in the model

may also be of intrinsic scientific interest in their own right.

In order to make appropriate use of observations of the physical system it is impor-

tant to recognise model discrepancy, the difference between reality and the simulator

output. We illustrate through a simple example that an analysis that does not account

for model discrepancy may lead to biased and over-confident parameter estimates and

predictions.

The challenge with incorporating model discrepancy in statistical inverse problems

is the confounding with calibration parameters, which will only be resolved with mean-

ingful priors. For our simple example, we model the model-discrepancy via a Gaus-

sian Process and demonstrate that by accounting for model discrepancy our prediction

within the range of data is correct. However, only with realistic priors on the model

discrepancy do we uncover the true parameter values. Through theoretical arguments

we show that these findings are typical of the general problem of learning about physical

parameters and the underlying physical system using science-based mechanistic models.
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1 Introduction

Simulation models are used across almost all areas of physical science, engineering, envi-

ronmental, social and health sciences to study, predict and control the behavior of complex

physical systems. Such models are generally based on current scientific understanding, often

involving large systems of differential equations and implemented in complex computer pro-

grams. We call these simulators and here we are concerned with deterministic simulators,

i.e. ones that do not inherently model stochasticity and there exists a single true underlying

solution. Deterministic simulators are increasingly being employed in decision-making at all

levels from individual companies through national governments to international agencies,

and as a result there is a growing emphasis on understanding the uncertainties in their

outputs.

The field of study that has in recent years acquired the name ‘Uncertainty Quantifica-

tion’, or simply ‘UQ’, has primarily been concerned with propagating uncertainty about

the inputs in order to infer the uncertainty in the simulator output. However, another

important component of uncertainty is model discrepancy, defined as the difference between

the simulator output and the real physical system value that the simulator is intended to

predict. Simply propagating input uncertainty to infer output uncertainty is clearly only

a partial quantification of uncertainty about the physical system value as it does not take

into account model discrepancy (and other sources of uncertainty).

Model discrepancy was formally introduced as a source of uncertainty in simulator pre-

dictions by Kennedy and O’Hagan (2001), who referred to it as model inadequacy (other

commonly used names include model error, model form error, model bias and structural

uncertainty). They considered the problem of using observations of the real physical sys-

tem to learn about uncertain input parameters, a process usually known as calibration, and

showed how to account for model discrepancy in calibration and in subsequent predictions

of the physical system. Since then, their inferential ideas and modeling framework have

been widely adopted and further developed, e.g. Higdon et al. (2004, 2008); Qian and Wu

(2008); Goldstein and Rougier (2009); Bayarri et al. (2007); Gramacy and Lee (2008).

Furthermore, the sometimes called “Kennedy-and-O’Hagan approach” has been applied in

diverse fields such as ecology (Arhonditsis et al., 2008), hydrology (Reichert and Mieleitner,

2009), engineering (Apley et al., 2006; Bayarri et al., 2009), health sciences (Strong et al.,

2012), nuclear reactors (Unal et al., 2011), experimental physics (Lee et al., 2008), astro-

physics (Habib et al., 2007) and climate modeling (Murphy et al., 2007; Stainforth et al.,

2007; Rougier, 2007; Sansó and Forest, 2009).
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Modeling of model discrepancy uncertainty by Kennedy and O’Hagan (2001) was simple

but they claimed that by recognising this additional source of uncertainty the resulting

predictions were not over-confident. We consider here the role of model discrepancy in more

detail, using general arguments and supporting those arguments with a simple example. We

show that while the original claim of Kennedy and O’Hagan (2001) may be correct when

we consider predictions in the region where we have data, i.e. interpolation, the situation

is more complex when it comes to learning about the true values of physical parameters in

the model and when our interest is in extrapolation.

Our principal findings concerning the use of observations of the physical system to learn

about parameters or to make predictions are:

• if model discrepancy is ignored, predictions (both interpolations and extrapolations)

and inferences about parameters are biased, and this bias persists with increasing

numbers of observations;

• if model discrepancy is modelled in a simple, uninformative way, interpolations are

unbiased but extrapolations and inferences about parameters will still typically be

biased;

• in order to obtain realistic learning about model parameters, or to extrapolate outside

the range of the observations, it is important not just to incorporate model discrepancy

but to model carefully the available prior information about it.

We do not claim that these findings are entirely novel; certainly many researchers work-

ing with the Kennedy-and-O’Hagan approach are aware of some or all of these results.

Nevertheless, there has not previously been a full exposition of these findings in the statis-

tics literature, let alone in applied mathematics journals. Our claim to originality lies in

the careful and thorough exposition of the importance of model discrepancy and of prior

information about model discrepancy, aided by a simple and intuitive example.

We begin in Section 2 by formulating the calibration problem in general terms. Section

3 introduces a simple example to motivate the principal findings above, then in Section

4 we present the general theory. In Section 5 we summarise the findings and argue that

the development of techniques for modelling prior knowledge about model discrepancy is

possibly the highest priority topic for research in UQ today.
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2 Calibration

2.1 Notation

We formulate calibration using the terminology and notation of Kennedy and O’Hagan

(2001). A simulator will typically have some inputs, known as control variables, whose

values define the particular instance of the physical system to be predicted, e.g. location,

time, machine setting etc. It also has inputs known as calibration parameters whose values

are uncertain. We represent the simulator as η(x, u), where x denotes the control variables

and u represents the calibration parameters. We suppose that we have n observations of the

physical system, denoted by z1, z2, . . . , zn. The i-th observation zi is of an instance of the

physical system associated with control inputs xi, and we assume that the xis are known.

We model the i-th observation as

zi = ζ(xi) + εi , (1)

where ζ(xi) is the true value of the physical system at control variable value xi and the εis

are independent observation errors. Model discrepancy now enters through the equation

linking reality to the simulator:

ζ(x) = η(x, θ) + δ(x) , (2)

where θ is the true but unknown value of the calibration parameter vector u. Combining

equations (1) and (2), we have

zi = η(xi, θ) + δ(xi) + εi , (3)

which expresses the observation as the sum of three terms — the simulator output evaluated

at the relevant values xi of the control variables and the true values θ of the calibration

parameters, the model discrepancy at xi and observation error.

We take a Bayesian approach, that is, prior distributions are assigned to θ and the model

discrepancy function δ(·), and these are updated to posterior distributions conditional on

the observations. A posterior predictive distribution for the value of the physical system

ζ(x) at any given x can then be derived from (2). We will show that if model discrepancy

is ignored then the posterior distributions of θ and ζ(x) will not have desirable properties,

and in particular will not converge on the true values as the sample size n goes to infinity.
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2.2 Physical parameters and tuning parameters

It is sometimes useful to identify two types of calibration parameters. Physical parameters

have meaning within the science underlying the simulation model. Learning about the

values of physical parameters can contribute to the underlying science. Tuning parameters,

however, do not have physical meaning. Their role is often to act as a simplified surrogate

for some more complex process that is not modelled in the simulator. They are there to help

the model to predict reality more accurately and their ‘true’ values are whatever enable the

model to fit best to reality. Although learning about the values of tuning parameters may

have limited scientific value, for instance to learn something about the practical impact

of processes not directly modelled or resolved in the simulator, they are not of scientific

interest in their own right.

Physical parameters are also important for extrapolation. Simulators are typically cali-

brated using observations at xi values for which it is feasible to make such observations,

but the simulator is generally required to predict the behaviour of the physical system at

control variable values where we cannot readily observe it. Tuning parameters do not help

to make the leap from where we have data to where we do not, because the best fitting

values of tuning parameters will typically be different. Because physical parameters have

fixed values independent of the context of the simulator’s application, learning about their

values with observations at some xis should improve prediction at other values of x.

3 A motivating example

We present the following analysis of a simple example to introduce and motivate the general

analysis in Section 4.

3.1 The simple machine

Imagine a machine where the amount of work delivered depends on the amount of effort we

put into it. Our somewhat naive simulator for this machine is that work is proportional to

effort, i.e.

η(x, θ) = θx (4)

where x is effort and θ is the efficiency of the machine. The parameter θ is unknown and

our interest is in both learning about θ and then using this model to predict work for a

given amount of effort. In the notation of Section 2, x is a control input, θ is a physically
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Figure 1: The Simple Machine for the true value of θ: η(x, 0.65) = 0.65x, the true process
ζ(x) and the dataset with 11 observations.

meaningful calibration parameter and there are no tuning parameters. This simulator has

obvious deficiencies in that any losses in efficiency (e.g. due to friction) are not accounted

for. We therefore have model-discrepancy that needs to be acknowledged and dealt with.

We produced synthetic experimental data by simulating, with random error, from the true

process;

zi = ζ(xi) + εi , i = 1, . . . , n (5)

where the measurement errors εi are i.i.d. N(0, 0.012) and the inputs x1, . . . , xn were evenly

spaced over the interval [0.2, 4]. The underlying true process is

ζ(x) =
θx

1 + x/a
(6)

where θ = 0.65 and a = 20. To illustrate the effect of sample size we produced three

datasets that have n = 11, 31 and 61, where the smaller datasets are subsets of the larger

datasets. Figure 1 shows the Simple Machine for the true value of θ, i.e. η(x, 0.65), the true

process ζ(x) and the dataset with eleven observations.

Our computer model is simple, yet it is a sensible model for the process. The θ parameter

in the Simple Machine (4) is the same physical parameter as in true process (6). That is,

for small x the true process is roughly θx and θ is the gradient of the true process at zero.

It is the theoretical efficiency of the machine, and as such it is a physical parameter that is

of intrinsic interest to the machine’s designers. From now, we will act as though we do not

know the true process in (6) exactly. We only use the synthetic datasets and the more vague

information about the discrepancy between ζ(x) and η(x, θ) that “losses are not accounted

for”.
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3.2 Analysis without accounting for model discrepancy

For the Simple Machine, if we ignore the model discrepancy term in (3) we have

zi = η(xi, θ) + εi = θxi + εi , i = 1, . . . , n , (7)

where εi are i.i.d. N(0, σ2
ε ). This is just a linear regression through the origin, and we

estimate θ using the usual method of Bayesian regression. We assume the joint improper

prior distribution p(θ, σ2
ε ) ∝ σ−2

ε and so posterior inference on θ is based on the Student’s

tn−1 distribution (see Appendix A).

The posterior densities of θ for the three different datasets are shown in Figure 2 a). The

posterior means and 90% credible intervals are

11 observations: 0.562 (0.551, 0.573),

31 observations: 0.564 (0.557, 0.571) and

61 observations: 0.565 (0.560, 0.569) .

In this simple example, it is easy to see why we under-estimate θ. The straight line through

the origin that best fits the data in Figure 1 will clearly have a slope less than the true

θ = 0.65, which is the gradient at the origin. It is important to recognise that the bias,

which will clearly persist for any number of observations, is due to model discrepancy.

Not only is θ under-estimated but the posterior credible intervals are not even close to

covering the true parameter value. This is in part because we have fixed the observation

error variance σ2
ε at a small value, so the posterior variance of θ is quite small even with

only 11 observations. However, even if we had used a larger error variance, with more data

the posterior variance will become arbitrarily small and so credible intervals will always fail

to cover the true value for sufficiently large n. Quite simply, with more and more data from

the true process we become more and more sure about the wrong value for θ.

Figures 3 a) and 5 a) show the posterior density of ζ(x0), which since we are ignoring model

discrepancy is the same as θx0, at x0 = 1.5 (interpolation) and x0 = 6 (extrapolation) for

the three sample sizes. The corresponding true values are ζ(1.5) = 0.65×1.5/(1+1.5/20) =

0.907 and ζ(6) = 3.0. In every case the posterior density fails to cover the true value (even

for interpolation) and with more data we only become more and more sure about the wrong

value.
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3.3 Accounting for model discrepancy — methods

We present two analyses that account for model discrepancy but differ in the prior that is

assumed for the discrepancy term.

For our Simple Machine the observation equation (3) becomes

zi = xiθ + δ(xi) + εi , i = 1, . . . , n , (8)

where the εis are independent N(0, σ2
ε ) and we now explicitly acknowledge model discrep-

ancy. Following Kennedy and O’Hagan (2001), we represent the model discrepancy term

δ(x) as a zero-mean Gaussian process (GP):

δ(·) ∼ GP (0, σ2c(·, ·|ψ)) , (9)

with the squared exponential correlation function (also called the Gaussian correlation func-

tion):

c(x1, x2|ψ) = exp

(
−
(
x1 − x2

ψ

)2
)
. (10)

It is important to understand how such a representation might formulate prior knowl-

edge about the discrepancy function δ. A GP is a probability distribution for a function.

Equation (9) says that at any point x the prior probability distribution of δ(x) is normal

(Gaussian) with mean zero and variance σ2c(x, x | ψ), which from (10) is just σ2. The zero

mean says that we do not have a prior expectation that δ(x) is more likely to be positive or

more likely to be negative. The variance σ2 expresses a prior belief that δ(x) is not likely to

be outside the range ±2σ, so it measures the strength of prior information about δ(x). The

fact that the variance is the same for all x implies that we do not have a prior expectation

that |δ(x)| is likely to take larger values for some x values than for others. The correlation

function (10) expresses a prior belief that δ(x) will be a smooth function, with the value of

δ(x1) being close to that of δ(x2) if x1 is close to x2. The parameter ψ determines how far

apart x1 and x2 need to be before δ(x1) can be very different from δ(x2).

Our first analysis using model discrepancy adopts this simple representation, as originally

proposed by Kennedy and O’Hagan (2001). Figure 6 (first column) shows a few realizations

of this prior. We know in advance that this is not a realistic prior for the model discrepancy

in the Simple Machine example because it goes against some of the things we know a priori.

We know that our Simple Machine does not account for friction so the real process will be

less than what our Simple Machine predicts (using the true θ). Hence, we know that δ(x)

is always negative (except at x = 0) which is not reflected in the zero-mean GP prior. Also,

we know that the friction will increase slowly and smoothly as the effort x increases so δ(x)
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Figure 2: Posterior densities of θ for the three cases: a) Analysis without model-discrepancy
(MD), b) assuming a Gaussian Process (GP) prior on the MD and c) assuming a constrained
GP prior on the MD. The true value of θ (0.65) is indicated with a vertical line.

is a smooth and monotonically decreasing function. At the other end, friction will tend to

zero when x tends to zero and in fact we know that δ(0) = 0. Any serious analysis would

respect these properties in a prior distribution for the model discrepancy.

As a second approach we therefore incorporate our prior knowledge about the model dis-

crepancy by conditioning the process and its derivatives at pre-specified points. What makes

this possible is that derivatives of a Gaussian process are still a Gaussian process. More

specifically, if δ(x) is a GP with mean function m(x) and covariance function σ2c(x1, x2)

then all derivatives δj(x) = djδ(x)
dxj

are jointly normal with

E(δj(x)) =
djm(x)

dxj
and

Cov(δj(x1), δi(x2)) = σ2d
j+ic(x1, x2)

dxj1dx
i
2

given that the above derivatives exist (O’Hagan, 1992; Adler, 2010). Therefore, after con-

ditioning on specific values of the process and/or its derivatives at fixed points we still have

joint normality. Here we condition on

δ(0) = 0 and δ′(0) = 0 . (11)

These constraints reflect that δ(x) tends to zero when x tends to zero as well as being zero

at the origin. The constraint that δ′(0) = 0 is very important because it is through this

condition that we express the true physical meaning of θ as the slope of ζ(x) at x = 0. We

also know that δ(x) ≤ 0 and δ′(x) ≤ 0 (model-discrepancy is monotone) for all x. We cannot

impose such global inequality constraints and still enjoy the computational convenience of
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a Gaussian Process. However we can introduce inequality constraints at a finite number of

points which leads to (multivariate) truncated normal distributions. Examples of imposing

constraints on the derivatives of a Gaussian Process include Riihimäki and Vehtari (2010)

and Wang and Berger (2011). More discussions on this topic can for example be found in

Da Veiga and Marrel (2012) and references therein.

Figure 6 (second column) shows realizations of a Gaussian process conditioned on the equal-

ity constraints in (11) and two inequality constraints

δ′(0.5) < 0 and δ′(1.5) < 0 . (12)

We see how the effects of the locations of the inequality constraints and the correlation

length ψ interact. If the process is smooth (ψ is large) then only a few constraints of the

form δ′(xi) < 0 are needed to keep the realizations negative. If ψ is small the realizations

are free to wander off between the locations of the inequality constraints. In our case we

know that the model discrepancy is smooth, which will be reflected in our prior on the

correlation length ψ, so it should be enough to include only a few inequality constraints to

impose monotonicity.

We fit the model in (8) for these two cases, the unconstrained case and the constrained case,

applying the four constraints in (11) and (12). We assume the same prior distributions for

unknown parameters in both cases. We assume a flat improper prior for θ, imposing no

prior knowledge on θ. In practice there may be some prior knowledge about the physical

parameters (range, order of magnitude), but our focus here is on learning θ and on priors

for model discrepancy. We use Inverse-Gamma priors for σ2
ε and σ2. We assume that the

measurement error is fairly well known and choose a mean of 0.012 and mode 0.0092 for

the prior of σ2
ε (recall that the synthetic data were simulated with σ2

ε = 0.012). Less is

known about σ2 and we choose the Inverse-Gamma distribution with mean 0.32 and mode

0.22 based on the order of magnitude of the work produced. We know that the model

discrepancy is smooth and with that in mind we assume a Gamma prior distribution for

ψ with mean 1 and variance 0.2. Due to numerical problems in the MCMC algorithm we

truncate this prior distribution at ψ = 4.

In both cases we obtain approximate samples from the posterior distribution via Gibbs

sampling with a Metropolis-Hastings step for ψ. Full conditional distributions are given in

Appendix B. Since we are interested in inference about the shape of the model discrepancy

function we sample the δ(x) process at points of interest as well as other parameters. One

problem that arises is that when ψ is large the covariance matrices become numerically

singular which creates problems for the Gibbs sampler. We remedy that by sampling δ(xi)

only at 6 observation points, δo, and set the rest of δ(xj)’s equal to their conditional
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Figure 3: Posterior densities of the true process at x0 = 1.5 (interpolation) for the three
cases: a) Analysis without model-discrepancy (MD), b) assuming a Gaussian Process (GP)
prior on the MD and c) assuming a constrained GP prior on the MD. The true value of
ζ(1.5) is indicated with a vertical line.

mean, given δo. The details are given in Appendix B. For the unconstrained case we

obtained 80,000 samples from the posterior and discarded the first 20,000 as burn-in. In

the constrained case the parameters showed slower mixing so we obtained 200,000 samples

and discarded the first 50,000 as burn-in. Traceplots of parameters did not indicate lack of

convergence.

3.4 Analysis with model discrepancy — results

In Figure 2 (second two columns) we show estimated posterior densities of θ for the three

datasets and both the constrained and unconstrained prior distributions for δ(·). The

unconstrained GP prior on the discrepancy yields the following posterior means and 90%

credible intervals:

11 observations: 0.552 (0.477, 0.626),

31 observations: 0.535 (0.459, 0.609) and

61 observations: 0.533 (0.458, 0.607) .

As in the analysis without model discrepancy, we see that the posterior distribution is

biased downwards; with increasing sample size the posterior mean is too low and the true

physical value of 0.65 is always out in the extreme tail of the distribution. However, unlike

the previous analysis the posterior uncertainty does not degenerate with more data. The

width of the credible interval does not tend to zero but seems to have stabilised by around

n = 31. Turning to the posterior densities from the constrained GP prior (see last column

11



Unconstrained prior on the model discrepancy
ψ σ σε

11 obs. 1.94 (1.08, 2.89) 0.20 (0.13, 0.30) 0.0111 (0.0088, 0.0142)
31 obs. 2.11 (1.34, 2.96) 0.20 (0.14, 0.30) 0.0120 (0.0100, 0.0143)
61 obs. 2.14 (1.46, 2.89) 0.21 (0.14, 0.31) 0.0114 (0.0099, 0.0131)

Constrained prior on the model discrepancy
ψ σ σε

11 obs. 2.02 (1.13, 2.95) 0.25 (0.16, 0.38) 0.0110 (0.0087, 0.0139)
31 obs. 2.22 (1.47, 3.11) 0.27 (0.18, 0.42) 0.0119 (0.0100, 0.0142)
61 obs. 2.23 (1.59, 3.02) 0.28 (0.18, 0.42) 0.0114 (0.0100, 0.0130)

Table 1: Posterior means and 90% credible intervals for ψ, σ2 and σ2
ε for different cases.

in Figure 2) we see that these do cover the true value of θ although concentrated slightly

to the left of it. The posterior means and 90% credible intervals are

11 observations: 0.631 (0.610, 0.661),

31 observations: 0.641 (0.624, 0.665) and

61 observations: 0.638 (0.624, 0.659) .

Like the analysis with the unconstrained prior, with increasing n the width of the credible

interval stabilises without tending to zero, although they are now much narrower because

of the extra information that the constraints imply about δ(·).

Posterior means and 90% credible intervals for the range parameter, ψ, and the standard

deviations σ and σε are shown in Table 1 and posterior densities of ψ are shown in Figure

4. The posterior inference of these parameters are very similar for the unconstrained and

constrained cases.

Now consider inference about the true process ζ(x0) at an x0 where it has not been observed.

In Section 3.2 we saw that without model discrepancy the posterior distributions failed to

cover the true value, both for interpolation at x0 = 1.5 and for extrapolation at x0 = 6.

Estimated posterior predictive densities for ζ(1.5) are shown in Figure 3. Compared with the

case without model discrepancy in Figure 3 panel a), panels b) and c) show that accounting

for model-discrepancy leads to a dramatic improvement. The posterior predictive densities

not only cover the true value of ζ(1.5) = 0.907 they become centered around the true value

when sample size increases. However, introducing model discrepancy is far less effective

when we consider extrapolation. Figure 5 shows estimated predictive posterior densities of

ζ(6). In all cases we completely over shoot the true value and only in the unconstrained

case do the densities reach the true value.
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Figure 4: Posterior densities of the range parameter, ψ, of the Gaussian Process (GP)
modeling the model-discrepancy (left) and the constrained GP (right).
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Figure 5: Posterior densities of the true process at x0 = 6 (extrapolation) for the three
cases: a) Analysis without model-discrepancy (MD), b) assuming a Gaussian Process (GP)
prior on the MD and c) assuming a constrained GP prior on the MD. The true value of
ζ(6) is indicated with a vertical line.
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Figure 6: Realizations of a Gaussian process with mean function zero, covariance function
squared exponential, σ2 = 1 and correlation length ψ = 0.3 (first row) or ψ = 1 (second
row). First column is the unconstrained process, in the second column we have constrains
δ(0) = 0, δ′(0) = 0, δ(0.5) < 0 and δ(1.5) < 0.

Introducing model discrepancy has clearly had mixed results for the Simple Machine and

can be summarized as follows:

• It seems that in order to make good inferences about the physical parameter θ we

need to do more than just introduce the model discrepancy term. In this example,

it is only when we add constraints which represent genuine prior information about

model discrepancy that the posterior credible intervals cover the true value.

• When we look at interpolation, adding model discrepancy in this example produces

good inferences, even with the unconstrained GP prior.

• For extrapolation, introducing model discrepancy does not appear to have made good

inferences possible. Furthermore, in this example it seems that introducing constraints

on δ(x) in the range of the data does not help (and may even make inferences worse

than with the simple unconstrained prior) when extrapolating outside that range.

In the next section we explain these findings and show that they are typical of what we

should expect to find in general when trying to use science-based mechanistic models to

learn about physical parameters and the underlying physical system.
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4 The general case

4.1 Calibration without model discrepancy

Consider the general model (3) for observations, where model discrepancy δ(xi) is included

explicitly. We could write it as

zi = η(xi, θ) + ei , (13)

where model discrepancy has now been absorbed into the new error term ei = δ(xi) + εi.

However, it is important to recognise that whereas the original observation errors εi are

independent this will not be true of the eis because it would require the discrepancy terms

δ(xi) and δ(xj) to be independent for all i 6= j. Independence clearly cannot hold if the

i-th and j-th observations are made at the same control values, because then δ(xi) must

equal δ(xj). Furthermore, model discrepancy will generally be a continuous function of x,

and therefore δ(xi) and δ(xj) will be correlated whenever xi is sufficiently close to xj .

The traditional approach to calibration ignores model discrepancy. As in Section 3.2 for

the Simple Machine example, it is usual to assume (13) but to treat the eis as simple

independent observation errors εi. That is, traditional calibration uses the model

zi = η(xi, θ) + εi , (14)

and generally assumes that the εis are independent N(0, σ2
ε ) errors. In Section 3.2 this

reduced to the linear regression model (7). In general, (14) is a nonlinear regression model.

With weak prior information, the posterior distribution of θ will be centred on the best

fitting value θ̂ which minimises the residual mean square

S(θ̂) =
1

n

n∑
i=1

{
zi − η(xi, θ̂)

}2
.

Because the correct representation of the zis is (3), this estimate will be biased, even if the

sample size is large.

To understand this effect it is helpful to consider the limit as the number of observations goes

to infinity. Suppose, therefore, that we have effectively an infinite number of observations

with xi values filling some subspace Xobs of the space of possible values of x. Then in the

limit S(θ̂) will become σ2
ε + S∞(θ̂), where

S∞(θ̂) =

∫
Xobs

{
ζ(x)− η(x, θ̂)

}2
p(x)dx , (15)
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where p(x) denotes the density of the observations over Xobs. The posterior mean of θ will

be the value of θ̂ which minimises S∞(θ̂). If we substitute the true value θ̂ = θ into (15)

we obtain
∫
Xobs δ(x)2p(x)dx, which is not zero, and in general it will be possible to reduce

the integral (15) with a different value of θ̂. This best-fitting value depends on the model

discrepancy, and will also be different for different Xobs (and even for different densities p(x)

of observations over Xobs). This is easy to see in the Simple Machine example, Figure 1,

where the slope of the best fitting straight line through the origin would clearly be different

if we had observations over the range [4, 6] instead of in [0.2, 4].

Consider now the limiting posterior uncertainty around the asymptotic best fitting θ̂. We

suppose first that θ is identifiable (using observations over χobs) in the nonlinear regression

model (14). Then the posterior variance will go to zero, so as the sample size increases,

the posterior density converges more and more tightly around the best-fitting value and we

become more and more certain that θ lies in some arbitrarily small neighbourhood of this

estimate. Prior information about θ has no effect because it is ultimately overwhelmed by

the evidence from the observations. If θ consists entirely of tuning parameters, then these

findings give no cause for concern; calibration will be correctly identifying the best fitting

values of these parameters. If, however, there are physical parameters then the posterior

inference will in general be biased and unable to identify their true physical values.

Prediction (both interpolation and extrapolation) is equally bad. With an infinitely large

sample, the posterior distribution of ζ(x) is centred on η(x, θ̂), with zero variance. Again,

as the sample size increases we become increasingly certain that ζ(x) lies in an arbitrarily

small neighbourhood of η(x, θ̂), which for almost all x will not equal the true value ζ(x).

Now consider the case where θ is not identifiable in the model (14). This situation is not

uncommon in the use of simulation models, and is sometimes referred to as equifinality; see,

for example, Beven and Freer (2001). In this case there will not be a unique θ̂ minimising

(15) but a set of such values, and the posterior distribution will in the limit assign probability

one to this set. But because of model discrepancy, the true physical value of θ will in general

not lie in this set. Consequently, the conclusion in this case is essentially the same: as the

sample size increases we become more and more certain that θ lies in an arbitrarily small

region around a set of values that does not contain the true value. Prediction is in general

unaffected by equifinality, so the conclusion here is exactly as before.

In summary, calibration without explicit recognition of model discrepancy treats all cali-

bration parameters as tuning parameters. In that case it is not possible to learn the true

values of physical parameters, nor to predict accurately the real system ζ(x). With increas-

ing amounts of data we converge with increasing certainty on false values.
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4.2 Calibration with model discrepancy

Now suppose that we use the correct model (3). The model discrepancy δ(·) is unknown

and in principle could be almost any function. We will therefore suppose that a prior dis-

tribution is assigned for δ(·) with support that is dense over the space of possible functions.

The Gaussian process is one of many forms of prior distribution with this property. In

conventional statistics terms, (3) is a nonparametric regression model.

Again consider calibration with an infinite number of observations spread over the subspace

Xobs. Since the model is nonparametric and can adapt to any possible form of δ(·) we will

learn the true system function ζ(x) for all x ∈ Xobs. There is therefore no difficulty with

interpolation; the posterior distribution of ζ(x0) converges to the true value with increasing

certainty for all x0 ∈ Xobs. However, this does not necessarily mean that we can learn the

true values of physical parameters or extrapolate reliably.

We can rewrite (2) as

δ(x) = ζ(x)− η(x, θ) . (16)

Although we may learn reality ζ(·) perfectly, for any value of θ there is a δ(·) given by (16)

that agrees perfectly with that reality. There is redundancy in the model; ζ(·) is identifiable

from observations, but θ and δ(·) are not. Calibration produces a joint posterior distribution

for θ and δ(·) but as the sample size increases we become more and more certain that θ and

δ(·) lie in the manifold

Mζ= {(θ, δ(·)) : η(x, θ) + δ(x) = ζ(x); x ∈ Xobs} (17)

defined by the true physical system function ζ(·) and equation (16). All values of θ can be

found on that manifold and so the marginal posterior distribution of θ is not degenerate.

Even with an infinite quantity of observational data we cannot learn θ precisely.

Figure 7 shows the confounding between θ and δ(·) in the Simple Machine example for the

case of the unconstrained prior with n = 61. Figure 7(c) shows the posterior distribution

for ζ(·), obtained by plotting a subsample of the MCMC sample realisations from this

distribution. We see that after 61 observations we have effectively learned ζ(·) over the

range of the data with very little posterior uncertainty. Increasing n would simply make

the distribution even tighter and eventually degenerate. Figure 7(b) shows the posterior

distribution of δ(·), obtained in the same way by plotting MCMC samples. We see that

even with 61 observations we have by no means learnt the true model discrepancy function,

and increasing n would not change this plot appreciably. Even with an infinite amount

of data we cannot learn δ(·) because it is not identifiable. Figure 7(a) plots the posterior
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Figure 7: Confounding between θ and δ(x) for the unconstrained prior and n = 61. a)
Posterior density of θ showing the color coding of samples from light green (low θ values)
to dark blue (high θ values). b) Posterior ensembles of the model-discrepancy δ(x) color
coded by the value of θ. Red dashed line shows the true δ(x). c) Posterior ensembles of the
true process ζ(x) color coded by the value of θ. d) Close-up of c), red dashed line shows
the true ζ(x).
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density of θ and again this will not become appreciably narrower with more data. To show

the confounding between θ and δ(·), the MCMC sample realisations of δ(·) in panel (b) are

coloured with green when they are accompanied by low sampled values of θ, shading to blue

where they are accompanied by high values of θ. The colour-coding is shown by shading the

density of θ in panel (a). We see a clear colour gradient in panel (b), with high trajectories

for δ(·) corresponding to low values of θ, and vice versa. This is the manifold Mζ for the

Simple Machine; when θ is lower, the simulator predictions θx are low and in order for the

predicted ζ(x) to agree with the observations (16) says that δ(x) must be higher. Figure

7(d) shows part of the posterior distribution shown in panel (c), magnified so that we can

see the realisations, which have also been colour-coded in the same way. We do not see

a clear colour gradient in this distribution, showing that accurate interpolation of ζ(·) is

obtained for all θ values across the manifold.

Returning to the general case, all points on Mζ have equal likelihood and the posterior

distribution is determined here completely by the prior distribution. The posterior density

will be high for the true values of θ and δ(·) only if those values have high prior density

relative to other solutions of (16). With a finite sample size, the posterior distribution is

not degenerate onMζ but concentrates increasingly around this set at n increases. We now

distinguish between two types of prior distributions.

Case 1. Weak prior information about θ and a diffuse, zero-mean prior distribution for

δ(·).

This was the approach used in Kennedy and O’Hagan (2001). In this case the posterior

distribution will be rather flat over the set of (θ, δ(·)) pairs that give functions ζ(·) which

fit the observations, but will generally assign more probability to pairs where δ(x) is nearer

zero for x ∈ Xobs since the prior mean of δ(x) is zero. As a result, the posterior distribution

of θ will centre around a ‘posterior best fit’ value that is similar to θ̂. The posterior variance

of θ will not tend to zero but may not be large enough for credible intervals to cover the

true physical θ value. A similar situation holds for extrapolation. For x sufficiently far from

Xobs the posterior distribution of δ(x) will be almost the same as the prior distribution, and

in particular will have zero mean. Therefore extrapolation will be centred on η(x, θ), with

θ set at its posterior best fit value, and so will again be biased. The posterior variance of

ζ(x) will not tend to zero, but again may not be large enough for credible intervals to cover

the true value.

The unconstrained prior in the Simple Machine example corresponds to Case 1 and we see

these theoretical findings confirmed in the example. In particular, the posterior mean of

θ is 0.533, relatively close to the least squares fit value 0.565 from the analysis without
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Figure 8: Confounding between θ and δ(x) for the constrained prior and n = 61. a) Posterior
density of θ showing the color coding of samples from light green (low θ values) to dark blue
(high θ values). b) Posterior ensembles of the model-discrepancy δ(x) color coded by the
value of θ. Red dashed line shows the true δ(x). c) Posterior ensembles of the true process
ζ(x) color coded by the value of θ. d) Close-up of c), red dashed line shows the true ζ(x).
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model discrepancy and in this instance is even further from the true physical value of

0.65. The posterior distribution of θ does not become degenerate with increasing data, but

nevertheless in this example the posterior credible interval does not come close to including

the true value. The nonparametric prior distribution allows accurate inference about ζ(x)

within the range of the data (interpolation) but extrapolation is again poor.

Case 2. Realistic prior information about δ(·) and/or θ.

Stronger prior information will in general lead to a tighter posterior distribution over Mζ .

Of course, if that information is wrong in the sense that it assigns low prior probability to

the true (θ, δ(·)) pair relative to other points on Mζ , then that posterior distribution may

again fail to cover the true values. The more accurate the prior information, in the sense

of assigning relatively high prior probability to the true (θ, δ(·)) pair, the closer posterior

estimates will be to those true values and the greater the chance of posterior credible

intervals covering the true values. Notice that this does not mean that in order to get good

posterior inference we have almost to know the true values a priori. The data will reduce the

space of plausible (θ, δ(·)) pairs, ultimately to Mζ given enough data, and we only require

the prior information to favour the true values over other pairs in that plausible space.

However, although we can hope to learn about the true physical parameter θ, accurate

extrapolation is more challenging. The posterior distribution of ζ(x0) for x0 outside the

observed data now depends on the prior distribution of δ(x0) conditional on what we have

learnt about δ(x) in the range of the data.

In the Simple Machine example, the constrained prior is intended to provide the kind of

realistic prior information which might be available in a real example, and so corresponds

to Case 2. Figure 8 shows the same information for this case as Figure 7 does for the un-

constrained prior. Comparing the two figures, we see that panels (c) and (d) are essentially

the same in both cases, showing that we learn about ζ(·) over the range of the data for any

nonparametric model discrepancy prior, and that there is no posterior correlation with θ.

In panels (a) and (b) the shading again illustrates the strong posterior correlation between

θ and δ(·), but now the posterior distribution of θ in Figure 8(a) is quite different from

that in Figure 7(a). It is centred close to the true physical value of 0.65 and comfortably

includes that value. Figure 8(b) provides the explanation because we see here the effect of

the prior constraints. The posterior distribution of δ(·) is now quite tightly concentrated

on functions that have the right properties and covers the true model discrepancy function

(shown in red) over this range.

However, even with this constrained prior, extrapolation to x0 = 6 does not capture the

true value of ζ(6), as we saw in Figure 5. Figure 9 shows what is happening in this example.
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Figure 9: Posterior ensembles of the model-discrepancy, δ(x), at both observation points
and prediction points for the constrained case with n = 61.

As soon as x0 is sufficiently far from 4 (relative to the correlation hyperparameter ψ) so that

the δ(x0) is independent of δ(4), the posterior distribution of δ(x0) will be the same as its

prior distribution, which is centred on zero in this case. So although we are quite accurately

capturing the simulator output term θx0 for the true physical value of θ the observations

and the prior distribution have not enabled us to learn about the model discrepancy at

x0 = 6.

In order to obtain realistic extrapolation we need realistic prior information about δ(·), both

in the range of the data and out to the control variable values that we wish to predict.

5 Discussion

We have shown, through a simple numerical example and from general theoretical argu-

ments, that calibration without any explicit recognition of model discrepancy is dangerous

and leads to poor posterior inference about calibration parameters and poor predictive in-

ference. However, simply introducing model discrepancy with weak prior information, as

was done in Kennedy and O’Hagan (2001), is only a partial remedy. It can give accu-

rate interpolation but does not enable learning about physical parameters or extrapolation.

Wherever there is interest in learning about the values of physical parameters, or in extrap-

olating to contexts outside those for which we have observations of the physical system, it

is important to incorporate the best and most realistic prior information available about

the parameters and the model discrepancy function.
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We model the model discrepancy as an additive correlated error term in this paper (a

natural approach for the Simple Machine). Other approaches are of course possible, in fact

Kennedy and O’Hagan (2001) included a multiplicative model error term as well although

that approach has not been widely adopted in practice. Furthermore, the Gaussian Process

is not the only way to model a model discrepancy function, although in our view it is one

of the more flexible and convenient tools.

In our Simple Machine example, the constrained prior introduced realistic prior information

about the nature of the model discrepancy. Without giving any specific prior information

about the magnitude of model discrepancy (which might in practice be available), we simply

constrained the shape of δ(·) to be convex and decreasing from δ(0) = 0. The prior informa-

tion reflected the physical definition of the parameter θ as the gradient of the true process at

the origin. We found that constraining the model discrepancy function in this way enabled

realistic inference about θ and about δ(x) for x in the range of the data, i.e. x ∈ [0.2, 4].

However, the prior information was not enough to enable good extrapolation just a short

distance from those data, at x = 6. We could have added further constraints of the form

δ′(x) < 0 for larger x values, but although this would ensure that the posterior mean of

δ(6) did not return to zero it would stay close to δ(4) and so would have limited value for

extrapolation in practice. Alternative Gaussian process models for the model discrepancy

might be considered that would more naturally express a prior belief that the magnitude

of the model discrepancy should increase with x. For instance, the posterior mean of δ(·)
would not return zero as we extrapolate away from x = 4 if the prior discrepancy model

were a Gaussian random walk process, and the increasing variance of extroplation in this

case would also be more realistic. It is tempting to introduce a drift into such a model

with a negative mean for the increments, to be estimated from the data, but this would

be confounded with θ and would compromise the latter’s physical meaning. A model such

as the localised regression model of O’Hagan (1978) could also be considered. The Simple

Machine example serves not only to illustrate the dangers of failing to acknowledge model

discrepancy but also to show that realistic modelling of model discrepancy is a challenge.

The Simple Machine example, albeit a very simple simulator, does a good job of bringing out

the issues we wished to convey in this paper, without adding unnecessary detail. In more

complicated calibration/inverse problems the same issues of confounding between model

discrepancy and parameters will arise. In addition, more complicated simulators bring

even more challenges both computational and by introducing other sources of uncertainty

(e.g. emulator error and discretization error) that need to be addressed in concert with

model discrepancy and parameter uncertainty. How well these other sources of uncertainty

are distinguishable from model discrepancy is not entirely clear and is subject to further

research. For example, discretization/numeric error may not be formally distinguishable

from model discrepancy. However, this source of error is often well understood and such
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prior information may help to separate it from model discrepancy. Currently, discretization

error is rarely characterized in a probabilistic way; a notable exception is Chkrebtii et al.

(2014).

Prior information about physical parameters can be included, and there are formal tech-

niques of elicitation which can be deployed to express the knowledge of scientists or other

experts as probability distributions. However, such information will generally add little

because the essence of calibration is generally to learn about parameters whose values are

poorly known a priori. We believe that formulating prior information about model discrep-

ancy is the key to realistic calibration. In most cases modellers have some idea about what

physics or processes the simulator is missing, and we need to use the best judgements of

modellers and model users about how the simulator’s deficiencies will translate into model

discrepancy. However, this is a much more difficult task than eliciting prior distributions

for physical parameters. We have illustrated one approach through conditioning a simple

Gaussian process, but we have also discussed alternative models for the Simple Machine

example which might be able to model the prior knowledge more realistically, and in partic-

ular might enable better extrapolation. Prior information can take many forms and other

prior modelling approaches will undoubtedly be needed for other contexts. Research is

needed into tools for formulating prior knowledge about model discrepancy, and in view of

the importance of calibrating simulators we argue that the development of such tools should

be a priority area for research in this field.

It must also be recognised that however well we tackle the calibration problem we cannot

ever learn the true values of physical parameters, or predict the true process in regions

outside Xobs, where we have no observational data, to arbitrary accuracy no matter how

many observations we make for x ∈ Xobs. The calibration parameters and the model

discrepancy function are not identifiable and the accuracy of such inferences is limited by

the strength and accuracy of prior information over the manifoldMζ defined by (17). This

is a fundamental limitation to the use of mechanistic models.

When prior knowledge is available about what the simulator is missing, one might argue

that such information should then be incorporated in the simulator rather than using it

to inform a prior distribution on model discrepancy. While changing the simulator may

be the right thing to do in many cases, there are also many situation where that is not

possible or even advisable. Firstly, it may not be practical to further complicate simulators

that take days or weeks to evaluate for one input setting. Secondly, prior knowledge is

sometimes of a more qualitative nature which is not easy to model. For example, the prior

knowledge that our simulator for the Simple Machine “does not account for losses” is not

readily converted into a mathematical form. Thirdly, the available prior knowledge may be

uncertain or conflicting (e.g. from different experts). Then rather than putting all our eggs
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in one basket by choosing one of the possibilities we take this uncertainty into account in our

prior distribution for model discrepancy. We emphasize that we are certainly not advocating

ignoring opportunities to improve simulators. On the contrary, modelling is fundamentally

an iterative process. By challenging models with observational data we learn about their

deficienccies and this information may help the modeller to identify the next improvements

to the simulator. It is our view that recognising the existence of model discrepancy, and

carefully characterising prior information about the nature of the discrepancy, is not only

essential for scientific learning about physical parameters and for extrapolation, it is also

an intrinsic part of this iteration.

Here the famous quote of George E. Box comes to mind: “Essentially, all models are wrong,

but some are useful” (Box and Draper, 1987). But a model that is wrong can only be

useful if we acknowledge the fact that it is wrong. We argue that model discrepancy is an

important part of uncertainty quantification and must not be ignored, even though it may

be hard to account for.
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A Analysis without Model discrepancy

For the linear model in (7) and the prior p(θ, σ2
ε ) ∝ σ−2

ε , the posterior distribution of θ is

related to the Student’s tn−1 distribution in the following way:

(XᵀX)1/2(θ − θ̂)
S

∼ tn−1 (18)

where θ̂ = (XᵀX)−1XᵀZ and S2 = 1
n−1(Z−Xθ̂)ᵀ(Z−Xθ̂).
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B MCMC methods for analysis with Model Discrepancy

For the analysis that accounts for model-discrepancy (MD) we obtain approximate samples

from the posterior via a Gibbs sampler with a Metropolis-Hastings step for the correlation

length ψ. Here we give the full conditional distributions for both the unconstrained approach

(Appendix B.1) and the constrained approach (Appendix B.2). First we establish some

common notation.

Notation:

Z: Observations. n dim. vector, n = 11, 31 or 61.

x: Locations of the observations. n dim. vector, n = 11, 31 or 61.

δo: MD at points, xo = (0.2, 0.96, 1.72, 2.48, 3.24, 4.00)ᵀ. no = 6 dim. vector.

δr: MD at the remaining locations, xr. nr = n− no dim. vector.

δp: MD at additional prediction points. np dim. vector.

δq = (δ′(x1), δ′(x2))ᵀ: Constrained case only. x1 = 0.5, x2 = 1.5

Derivatives of MD, for inequality constraints. nq = 2 dim. vector.

δc = (δ(0), δ′(0))ᵀ: Constrained case only.

MD and its derivatives, for equality constraints. nc = 2 dim. vector

We sample the posterior distributions of δo and δq (in the constrained case) and the δp is

sampled simultaneously for convenience. The δc vector is not sampled and the δr vector is

set equal to the conditional mean given δo.

The joint prior distribution of δo, δr, δp, δq and δc is N
(
0, σ2Λ(ψ)

)
where Λ(ψ) is calculated

using the Gaussian correlation function and ψ represents correlation length. Partitions of

Λ(ψ) and subsequent conditional matrices will be denoted with o, r, p, q, c as needed. Let

θ = (σ2, ψ, σ2
ε ). The notation “

[
X
]
” stands for “the probability density function of X”.

B.1 Unconstrained GP prior

A complete formulation of the model is the following

Z|δo,θ ∼ N(Xθ +H(ψ)δo, σ
2
ε I)

δo|θ ∼ N
(
0, σ2Λ(ψ)o,o

)[
θ
]
∝ 1, σ2

ε ∼ IG(aε, bε), σ2 ∼ IG(a, b),

ψ ∼ trGamma(0,4)(aψ, bψ) (19)
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where trGamma(0,4) denotes the Gamma distribution truncated to the interval (0, 4). The

matrixH(ψ) is the identity matrix for the rows corresponding to xo and equal to Λ(ψ)r,oΛ(ψ)−1
o,o

for the other rows, i.e. the conditional mean of δr given δo.

Note that for high values of ψ the covariance matrix Λ(ψ) becomes numerically singular.

Also, θ and δo mix very slowly which is not surprising since there is an non-identifiability

issue between these parameters. To deal with this we jointly sample θ, δo and δp.

The joint full conditional distribution of θ, δo and δp given Z and θ is N(Σ̃−1m, Σ̃−1) where

m =


1
σ2
ε
XᵀZ

1
σ2
ε
HᵀZ

0np

 and Σ̃ =

(
1
σ2
ε
XᵀX 1

σ2
ε
XᵀA

1
σ2
ε
AᵀX 1

σ2
ε
AᵀA+ 1

σ2 Λ−1
op,op

)
(20)

where A =
(
H 0n×(no+np)

)
. Note that both H and Λ depend on ψ but that is omitted

from the notation here for clarity. By utilizing formulas for the inverse of a partitioned

matrixs and the Sherman-Morrison-Woodbury formula (twice) we only need inverses of

matrices of size no × no = 6× 6 to calculate Σ̃−1.

The full conditional distributions of the variances σ2 and σ2
ε are

σ2|Z, δo, θ, σ2
ε , ψ ∼ IG

(
a+

no
2
, b+

1

2
||δo||2Λ(ψ)−1

o,o

)
(21)

σ2
ε |Z, δo, θ, σ2, ψ ∼ IG

(
aε +

n

2
, bε +

1

2
||Z−Xθ −H(ψ)δo||2

)
(22)

We need a Metropolis-Hastings step for ψ. The full conditional distribution of ψ is

[
ψ|Z, δo, θ, σ2, σ2

ε

]
∝ 1

|Λ(ψ)o,o|1/2
exp

{
− 1

2σ2
||δo||2Λ(ψ)−1

o,o

}
× exp

{
− 1

2σ2
ε

||Z−Xθ −H(ψ)δo||2
}
ψaψ−1e−bψψ

Let ω = log(ψ). Let ωt−1 be the last sample for ω and let ω∗ be the new proposed value,

sampled from N(ωt−1, τ2) truncated above by log(4), where τ2 is set in advance. We accept

the proposed value with probability min(1, r) where

log(r) =
1

2
log
(∣∣∣Λ(eω

t−1
)o,o

∣∣∣)− 1

2
log
(∣∣∣Λ(eω

∗
)o,o

∣∣∣)+ (ω∗ − ωt−1)aψ − (eω
∗ − eωt−1

)bψ

− 1

2σ2
δᵀo

(
Λ(eω

∗
)−1
o,o − Λ(eω

t−1
)−1
o,o

)
δo

− 1

2σ2
ε

∣∣∣∣∣∣Z−Xθ −H(eω
∗
)δo

∣∣∣∣∣∣2 +
1

2σ2
ε

∣∣∣∣∣∣Z−Xθ −H(eω
t−1

)δo

∣∣∣∣∣∣2 . (23)
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B.2 Constrained GP prior

We used a similar Gibbs sampler for the case a constrained GP prior on the model discrep-

ancy, except we condition on δc = 0 up front and need to sample the δq vector (the vector

of constrained model discrepancy). The prior conditional distribution of δo, δr, δp, δq given

δc = 0 is N
(
0, σ2Σ(ψ)

)
where

Σ(ψ) = Λ(ψ)orpq,orpq − Λ(ψ)orpq,cΛ(ψ)−1
cc Λ(ψ)c,orpq .

The Λ(ψ) covariance matrix is calculated by using the Gaussian correlation function c(x1, x2)

in (10) and the covariance between derivatives of δ(x) when appropriate:

Cov(δ1(x1), δ(x2)) = −σ2 2(x1 − x2)

ψ2
exp

{
−(x1 − x2)2

ψ2

}
(24)

Cov(δ1(x1), δ1(x2)) = σ2 2

ψ2
exp

{
−(x1 − x2)2

ψ2

}(
1− 2(x1 − x2)2

ψ2

)
(25)

A complete formulation of the model is the following:

Z|δo, δc = 0,θ ∼ N(Xθ +H(ψ)δo, σ
2
ε I)

δo|δq, δc = 0,θ ∼ N
(
Σ(ψ)oqΣ(ψ)−1

qq δq, σ
2(Σ(ψ)oo − Σ(ψ)oqΣ(ψ)−1

qq Σ(ψ)qo)
)

δq|δc = 0,θ ∼ trN(−∞,0)(0, σ
2Σ(ψ)qq)[

θ
]
∝ 1, σ2

ε ∼ IG(aε, bε), σ2 ∼ IG(a, b),

ψ ∼ trGamma(0,4)(aψ, bψ) (26)

The matrix H(ψ) is the identity matrix for the rows corresponding to xo and equal to

Σ(ψ)r,oΣ(ψ)−1
o,o for the other rows, i.e. δr is set equal to its conditional mean given δo.

Unlike in the unconstrained case we update the δ vectors and θ separately. The full condi-

tional distribution
[
δo, δp, δq|Z, δc = 0,θ

]
is normal with covariance matrix and mean

Σ̃ = σ2Σ− σ4Σ

(
Hᵀ(σ2

ε I + σ2HΣooH
ᵀ)−1H 0no×(np+nq)

0(np+nq)×no 0(np+nq)×(np+nq)

)
Σ (27)

µ̃ =
1

σ2
ε

Σ̃oo

Σ̃po

Σ̃qo

Hᵀ(Z−Xθ) . (28)

where Σoo is the rows and columns of Σ that correspond to δo, i.e. the covariance matrix of

δo|δc = 0,θ. The dependence of H and Σ on ψ has been omitted from the notation. Again,

by using the Sherman-Morrison-Woodbury formula we only need to calculate inverses of
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matrices of size 6× 6.

We update δo, δp and δq in two steps.

Step 1: Sample
[
δq|δq ∈ Q,Z, δc = 0,θ

]
, where Q = (−∞, 0)× (−∞, 0). We do this one

element at a time:

1. Sample d2 ∼ trN(−∞,0)(µ̃q,2, Σ̃qq,22)

2. Sample d1 ∼ trN(−∞,0)

(
µ̃q,1 + Σ̃qq,12/Σ̃qq,22(d2 − µ̃q,2), Σ̃qq,11 − Σ̃2

qq,12/Σ̃qq,22

)

Operationally, if the mean µ̃q,j is negative we sample the normal distribution until we get

a negative number, otherwise we use the rejection sampling algorithm of Robert (1995).

Step 2: Sample
[
δo, δp|δq = d, δc = c,Z,θ

]
where d = (d1, d2)ᵀ from step 1. This

distribution is normal with mean and variance

µ̄ = mop + Σ̃op,qΣ̃
−1
q,q(d−mq)

Σ̄ = Σ̃op,op − Σ̃op,qΣ̃
−1
q,qΣ̃q,op

Other parameters:

The full conditional distribution of θ is normal with mean and variance

µθ = (XᵀX)−1Xᵀ(Z−H(ψ)δo) and σ2
θ = σ2

ε (XᵀX)−1 .

The full conditional distributions of the variances σ2 and σ2
ε are the following:

σ2|Z, δo, δq,θ, σ2
ε , ψ ∼ IG

(
a+

no + nq
2

, b+
1

2

∣∣∣∣∣∣[ δoδq ]∣∣∣∣∣∣2Σ−1
oq,oq(ψ)

)
σ2
ε |Z, δo, δq,θ, σ2, ψ ∼ IG

(
aε +

n

2
, bε +

1

2
||Z−Xθ −Hδo||2

)
.

We do a Metropolis-Hastings step for ψ and, as before, we use a normal proposal distribution

for ω = log(ψ). We accept a proposed value ω∗ over the last value ωt−1 with probability
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min(1, r) where

log(r) =
1

2
log
(∣∣∣Σ(eω

t−1
)oq,oq

∣∣∣)− 1

2
log
(∣∣∣Σ(eω

∗
)oq,oq

∣∣∣)+ (ω∗ − ωt−1)aψ − (eω
∗ − eωt−1

)bψ

− 1

2σ2

[
δ0

δq

]ᵀ (
Σ(eω

∗
)−1
oq,oq − Σ(eω

t−1
)−1
oq,oq

) [
δ0

δq

]
− 1

2σ2
ε

∣∣∣∣∣∣Z−Xθ −H(eω
∗
)δo

∣∣∣∣∣∣2 +
1

2σ2
ε

∣∣∣∣∣∣Z−Xθ −H(eω
t−1

)δo

∣∣∣∣∣∣2 .
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