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Abstract

In spatial statistics one usually assumes that observations are partial re-
alizations of a stochastic process {Y (x),x ∈ IRC}, where commonly C = 2,
and the components of the location vector x are geographical coordinates.
Frequently, it is assumed that Y (·) follows a Gaussian process (GP) with sta-
tionary covariance structure. In this setting the usual aim is to make spatial
interpolation to unobserved locations of interest, based on observed values at
monitored locations. This interpolation is heavily based on the specification
of the mean and covariance structure of the GP. In environmental problems
the assumption of stationary covariance structures is commonly violated due
to local influences in the covariance structure of the process.

We propose models which relax the assumption of stationary GP by ac-
counting for covariate information in the covariance structure of the process.
Usually at each location x, covariates related to Y (·) are also observed. We
initially propose the use of covariates to allow the latent space model of Samp-
son & Guttorp to be of dimension C > 2. Then we discuss a particular case of
the latent space model by using a representation projected down from C di-
mensions to 2 in order to model the 2D correlation structure better. Inference
is performed under the Bayesian paradigm, and Markov chain Monte Carlo
methods are used to obtain samples from the resultant posterior distributions
under each model. As illustration of the proposed models, we analyze solar
radiation in British Columbia, and mean temperature in Colorado.
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1 Introduction

Spatial statistics has been receiving a lot of attention in the last two decades. This
is related to our ability to store complex datasets, which may often be spatially
indexed. Generally, one assumes that {Y (x),x ∈ IR2} is a stochastic process, often
taken to be Gaussian. This assumption is quite convenient, as all we need to specify
are the mean and covariance functions of a stochastic process. In geostatistics it is
common practice to assume that the stochastic process is stationary, which means
that the distribution is unchanged when the origin of the index set is translated,
and isotropic, that is, the process is invariant under rotations about the origin. Fre-
quently, the covariance function is modelled as the product of a common variance
and a valid correlation function, and the correlation structure is commonly assumed
to be stationary and isotropic, i.e. a function of the Euclidean distance between
locations. There are in the literature many different correlation functions which
lead to valid covariance structures. See Cressie (1993), Gneiting (2002) and Baner-
jee et al. (2004) for examples of such functions. However, Sampson and Guttorp
(1992) point out, in the analysis of most spatio-temporal processes underlying envi-
ronmental studies, there is little reason to expect spatial covariance structures to be
stationary over the spatial scales of interest because there may be local influences
in the correlation structure of the spatial random process.

Sampson and Guttorp (1992) (S&G hereafter) were among the first to propose a
model that relaxes the assumption of isotropy and stationarity. Their idea involves
a latent space called D-space, and is based on a nonlinear transformation of the
sampling space (which is called G-space) into D-space, within which the spatial
structure is stationary and isotropic. Schmidt and O’Hagan (2003) (S&O hereafter)
proposed a Bayesian approach to this idea of modelling the covariance structure
as a function of the locations in a latent space. Their main contribution is to
propose a model whose parameters are estimated in a single framework. More
specifically, the unknown function d(·) that maps the locations from G-space into
D-space follows a Gaussian process, a priori. Some examples that implement the
latent space approach are e.g. Meiring et al. (1998); Le et al. (2001); Sampson et al.
(2001); Damian et al. (2003); Guttorp et al. (2007).

In the last 10 years many alternatives have been proposed to the S&G approach.
The most successful ones are those based on convolution. Higdon (1998) was the first
to propose a moving average convolution approach, based on the fact that any Gaus-
sian process with a specific correlation function can be represented as a convolution
between a kernel and a white noise process. Allowing the kernel to vary smoothly
across locations results in a valid nonstationary covariance structure. Fuentes and
Smith (2000) proposed an alternative approach to that of Higdon (1998). Instead
of making the kernel vary, they assumed that the spatial process is a convolution
between a fixed kernel and independent Gaussian processes whose parameters are
allowed to vary across locations. See Banerjee et al. (2004) for a discussion about
these two approaches.

More recently, Paciorek and Schervish (2006) generalize the kernel convolution
approach of Higdon (1998). Using a Gaussian kernel, whose covariances vary with

2



location, they obtain a general form of the covariance function, and show that this
can be generalized to correlation functions that are positive definite in Euclidean
space of every dimension. Kim et al. (2005) propose a different approach, to decom-
pose the spatial domain into disjoint regions within which the process is assumed
to be stationary. This decomposition is done through the use of the Voronoi tesse-
lation. Sampson (2010) discusses constructions for nonstationary spatial processes
focusing on the approaches mentioned above.

Let Y (x, t) denote the value of the process at location x = (x1, x2)
′ and time

t, for t = 1, 2, · · · . Usually, monitoring networks of environmental processes collect
information on many different variables of interest. We assume that at each location
x a vector of covariates, say Z(x), is also observed. Let G-space represent the space
defined by the geographical coordinates x, such that G ⊂ IR2. It is common practice
to define the process Y (·, t) in G-space and include the effect of covariates only in
its mean structure, frequently assuming a linear relationship between y(x, t) and
covariates z(x). See Cressie (1993) and Banerjee et al. (2004) for examples. There
are also many alternatives which consider nonlinear structures in the mean structure
of the process (e.g. Guttorp et al. (2007)). We aim to discuss here how the effect of
covariates might be also considered in the covariance structure of a spatial process.

Throughout the paper we let Yit = Y (xi, t) for i = 1, 2, · · · , n and t = 1, 2, · · · , T .
Let Yt = (Y1t, Y2t, · · · , Ynt)

T for t = 1, · · · , T . We suppose that Y1, · · · ,YT are
independently distributed with density Nn(µt,Σ), where Nn(µt,Σ) stands for the
multivariate normal distribution of dimension n with mean vector µt and covariance
matrix Σ. For simplicity of exposition, Section 2 concentrates on modelling the
covariance structure Σ by assuming µt = µ ∀t, and accommodating uniform priors
for µ. In particular, this section extends the latent space idea of S&G and S&O
for mappings from IR2 onto IRC (C > 2), such that the spatial stochastic process
is defined on a C-dimensional space. Then section 3 discusses a particular case of
the model introduced in section 2, by using a representation projected down from C
dimensions to 2 in order to model the 2D correlation structure better. Because the
covariance structure of this model is simpler than the general one proposed in section
2, therein the mean and covariance structures are jointly estimated. Next section
illustrates the performance of the proposed models in analyzing two datasets, solar
radiation from British Columbia and mean temperature from Colorado. Finally,
Section 5 discusses the advantages and disadvantages of the proposed models and
points to future avenues of research.

2 Introducing covariates in the latent space

approach

2.1 Modelling the data and correlation structure

In this section we assume it is required to make inference only about Σ. In this
particular case, the data yield an n× n sample covariance matrix S, obtained from
data at n spatial locations x1, · · · ,xn over T time points. Here we assume Yt ∼
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N(µ,Σ). After integrating out µ using a uniform prior, the likelihood for Σ has a
Wishart form

p(S | Σ) ∝| Σ |−T−1
2 exp

{
−T

2
tr SΣ−1

}
.

Notice further that when computing S we assume that the temporal effect has been
previously removed. The main target here is to model the spatial nonstationarity
present in the data. Each element of Σ is modelled through

Cov (Y (xi, t), Y (xj, t)) =
√

v(xi)v(xj) g(||d(x)− d(x′)||), (2.1)

where for all t, v(x) = Var (Y (x, t)), and g(·) denotes the correlation function of
the spatial process as a function of the Euclidean distance between locations in D-
space. The variances are assumed exchangeable a priori. More specifically, a priori,
the variances v(x) have inverse gamma distributions with mean τ 2 and f degrees of
freedom, that is,

v(x) | τ 2 ∼ IG(τ 2(f − 2), f) ∀x ∈ G (2.2)

π(τ 2) ∝ τ−2,

so that f is fixed and the mean τ 2 has a vague prior distribution. Here, if V ∼
IG(a, d) then f(v) = (a/2)d/2

Γ(d/2)
v−(d+2)/2 exp

{− a
2v

}
, v > 0.

S&O concentrates on mappings from IR2 onto IR2. They assume, a priori, that
the function d(x) = (d1(x), · · · , dC(x))′ follows a Gaussian process prior, such that
d(·) ∼ GP (m(·),σ2

dRd(·, ·)). A potential problem noted in the original S&G work is
that the mapping may fold so that two different points in G-space map into the same
point in D-space, with the undesirable result that these points become perfectly
correlated. The smoothness property of the Gaussian process prior tends to avoid
folding but cannot ensure that it will not happen. Although the multivariate normal
distribution is unimodal and the uncertainty about the mapping can be controlled
through the specification of the prior covariance structure of d(·) there might be
other aspects which influence the spatial process. Considering the approaches in
the literature that use the latent space idea, the only one that guarantees non-
folding of the mapping is that by Iovleff and Perrin (2004). In their approach the
function which maps locations into D-space is guaranteed to be bijective because
of the use of the Delaunay triangulation, and so it cannot fold. On the other hand,
Monestiez and Switzer (1991) analyse acid rainfall data for which they have tried
a mapping into a space of dimension 3. This was done because their first attempt
in fitting a model in a space of dimension 2 resulted in folding of their mapping
function.

Modeling the spatial correlation g(·) in IRC When considering the D-space of
dimension C > 2, one has to ensure the validity of the chosen isotropic covariogram
model in IRC . Like in S&O, the function g(·) might be modelled as

g(δ) =
K∑

k=1

αk exp
{−λk δ2

}
, (2.3)
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where, δ =|| d(x) − d(x′) ||=
√

(d1(x)− d1(x′))2 + · · ·+ (dC(x)− dC(x′))2. The
difference from S&O is that the correlation is based on the C different directions
of the coordinate system of the D-space. Notice that g(·) in ( 2.3) is a mixture
of squared exponential correlation functions, and for each component we assume
a correlation structure in D-space, of dimension C. Like in S&O, a nugget effect
can be included in the model, by assuming λ1 → ∞, such that we have g(δ) =
α1∆(0) +

∑K
k=2 αk exp {−λk δ2}, where ∆(0) is 1 when δ = 0, and 0 otherwise.

We now define the prior distribution of the parameters in the correlation function
g(·) in equation (2.3). Suppose that conditional on K, αj and λl are independent
for every j 6= l and j, l = 1, . . . , K with prior density given by

π(α1, · · · , αK , λ2, · · · , λK | K) ∝
K∏

k=2

πk(λk) with
K∑

k=2

αk = 1 and λ2 > · · · > λK , (2.4)

where
∏K

k=2 πk(λk) is the kernel of the prior joint density of λT = (λ2, · · · , λK) and
πk(λk) is the kernel of the log-normal density whose associated normal has mean µλ

and variance σ2
λ, k = 2, · · · , K. The αk’s have a uniform prior distribution over the

(K − 1)-simplex.

2.2 The d(·) process in IRC

In the general case of D being of dimension C, the function that maps the locations
from G-space onto D-space is a column vector d(·) of dimension C. Therefore the
prior distribution in S&O has to be adapted to this case, that is

d(x) ∼ GP (m(x),σ2
dRd(x,x)), (2.5)

where, now, m(·) is the mean vector of dimension C. The covariance structure of
d(·) is such that σ2

d is a matrix C × C and Rd(·, ·) measures the prior correlation
among the monitored locations such that Rd(x,x) = 1. It follows that the matrix
of the coordinates of the locations is C × n with D = (d1,d2, · · · ,dn), and di =
(d1i, d2i, · · · , dCi)

′, has a matrix normal distribution given by

D | m,Rd,σ
2
d ∼ N(C×n)(m,σ2

d,Rd),

where m is the C×n matrix representing the mean of the configuration of points in
D-space; σ2

d is a C × C matrix representing one’s prior belief about the covariance
structure among the axes of the coordinate system in D; Rd is a correlation matrix,
n× n, describing the prior information of the spatial correlation structure amongst
the sites in D-space. We next discuss the modeling of m(·), Rd, and σ2

d in IRC .

Assigning 0 mean to C − 2 axes Usually, the first two components of the prior
mean of the vector d(·) comprise, respectively, the geographical coordinates of the
observed locations in G-space. Now, assume that one has no prior information of
which variables could be considered as the C − 2 remaining axis of the coordinate
system in D-space. In this case, a naive solution to the folding problem, would
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be to assign a zero mean prior to the C − 2 remaining components of the vector
d(·). In other words, the prior mean of each observed location would be given by
m(xi) = (x1i

, x2i
, 0, · · · , 0)′.

This simple approach can be considered when there is lack of bijectivity in an
initial mapping into a space of dimension C = 2. If there is no other source of
information which could be used, this is the natural way to address this problem.
Notice that the inclusion of more axes gives the freedom to adjust better the observed
correlations, as a correlation function in IRT−1 fits the observed correlations perfectly
(Sampson and Guttorp, 1992). The use of the zero mean for the C−2 axes is just a
simple artifact which gives more flexibility to the model, allowing bigger dimensions
in D-space.

Making use of covariates for the C − 2 axes If it is known that a set of C − 2
covariates, say z(x), might influence the correlation structure amongst the sites,
they can be taken into account in the model by including them as the coordinates
of the function d(·) which maps the locations from G-space into D-space. In this
case we suggest to make m(x) = (x1, x2, z1(x), · · · , zC−2(x))′.

Defining Rd in IRC As in S&O, Rd is the correlation matrix which gives prior
information about the shape of the configuration of points in D-space. And this is
measured through the correlation amongst the sites in G-space. The aim is to have a
smooth mapping, and this is attained by assigning a squared exponential correlation
function for Rd(x,x∗), such that Rd(x,x∗) = exp {−(m(x)−m(x∗))′Bd(m(x)−m(x∗))},
where Bd is a fixed C×C diagonal matrix with Bd = diag (bd, bd, b3, · · · , bC). Notice
that the first two components of m(x) have the same roughness parameter bd. As
we assume Rd as a fixed matrix there is no problem in assuming different roughness
parameters for the different directions. The C−2 diagonal elements of Bd represent
a measure of our belief about the degree of smoothness of d(·) as a function of each
one of the C − 2 covariates independently (Haylock and O’Hagan, 1996). Notice
that in Rd(·, ·) we are taking into account the information of the C directions in the
prior structure of the covariance function of d(·).

If one assumes m(x) = (x1, x2, 0, · · · , 0)′, as the C − 2 components have no
information in G-space, the computation of Rd(x,x∗) simplifies to Rd(x,x∗) =
exp {−bd [(x1 − x∗1)

2 + (x2 − x∗2)
2]}.

Defining σ2
d in IRC The modeling of the prior covariance matrix of d(·) also

depends on σ2
d. As in the case of C = 2, described in S&O, σ2

d describes the
prior covariance amongst the C axes of the coordinate system in D. The likelihood
brings information at most about the eigenvalues of σ2

d (Schmidt and O’Hagan,
2003). It follows then that σ2

d is modelled as a diagonal matrix C × C such that
σ2

d = diag (σ2
d11

, σ2
d22

, · · · , σ2
dCC

) and independent inverse gamma prior distributions
are assigned to each element of the main diagonal of σ2

d, such that σ2
djj
∼ IG(aj, bj),

for known aj and bj, ∀j = 1, 2, · · · , C. Small values of σ2
djj

, j = 1, 2, · · · , C, imply

that less distortion is expected a priori. Notice that as σ2
d is a random parameter, the
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scaling of the D-space is unknown. Also, the correlation function g(·) has unknown
roughness parameters λk. Therefore, the scaling of the different axes should not
affect the assumption of isotropy of the D-space, as these parameters should take
into account the different scales of the axes of the coordinate system. The influence
of σ2

d in the prior covariance structure amongst the locations of the sites in D-space
is also related to the different values of the roughness parameters in the diagonal
of Bd in Rd. It is advised to use moderate values for the elements of Bd such
that locations which are close together in G-space will tend to be mapped close
together in D-space, as their prior correlation might be strong, whereas sites which
are far apart in G-space will tend to move more independently from the remaining
ones, since their moves in D-space are more influenced by the values assigned to
the elements of the main diagonal of σ2

d. Each value in the main diagonal of σ2
d

gives prior information of how far each coordinate will move in the jth direction.
The specification of the prior of σ2

djj
is related to the covariate being used in the jth

direction and therefore, the scale in which it is being measured.

2.3 Inference procedure for the latent space model

The complete set of parameters is Θ = {(v1, v2, · · · , vn), (d1, . . . ,dn) ,(α1, · · · , αK , λ), (τ 2,σ2
d)}.

According to Bayes’ theorem, the posterior for Θ is proportional to prior times like-
lihood, that is

π(Θ | S) ∝ | Σ |−T−1
2 exp

{
−T

2
tr SΣ−1

} {
n∏

i=1

v
−(f+2)/2
i exp

(
−(f − 2)τ2

2vi

)}

× | σ2
d |−n/2| Rd |−1 exp

{
−1

2
tr (D−m)′σ−2

d (D−m)R−1
d

}
(2.6)

×
C∏

c=1

(σ2
dcc

)−(βc+2)/2 exp

{
− αc

2σ2
dcc

}
τ

(nf−2)
2

{
K∏

k=2

1
λk

exp
{−(log(λk)− µλ)2

2σ2
λ

}}
.

Analytical summarization of (2.6) seems infeasible and we resort to Markov chain
Monte Carlo (MCMC) simulation (see e.g. Gamerman and Lopes (2006)).

The algorithm to obtain samples from the posterior in (2.6) is a hybrid Gibbs
sampler. Following the full conditionals of each of the parameters we sample vi

using the adaptive rejection sampling (Gilks and Wild, 1992) as its full conditional

is log-concave when expressed in terms of v
−1/2
i ; then we sample elements of D by

Metropolis-Hastings steps. The elements of α = (α1, · · · , αK) are sampled through
a Metropolis-Hastings step; as

∑K
k=1 αk = 1, we make independent proposals for the

logit of each αk and obtain αK = 1−∑K−1
k=1 αk. We also sample λ2, · · · , λK through

Metropolis-Hastings steps; τ 2 is sampled from the respective gamma distribution;
and the variances of the prior distribution of D, σ2

djj
, j = 1, · · · , C, are sampled

from their respective inverse gamma distributions.
The two most complex steps are to update D and b2, . . . , bK . The full conditional

posterior distribution of d(·) is the combination between the prior multivariate Nor-
mal distribution and the likelihood, which is invariant under rotation, location, and
scale changes of the configuration of points. The Metropolis-Hastings proposal we
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use is based on the principal components of the sample covariance matrix S, and
instead of sampling locations we sample directions. If we consider sampling the
locations separately, one at a time, then those which are highly correlated tend not
to move much. In sampling the directions we overcome this problem because the
principal components of S indicate how the locations are correlated. This ensures
that sites which are highly correlated, those with small values of the principal com-
ponents, tend to move together along the D-space. Sampling from the posterior
full conditional of the roughness parameters λk in g(·) is also challenging. Assume,
for simplicity, that the correlation function has only two components (K = 2), one
of them a nugget effect. Therefore we have only one roughness parameter, λ2, in
the correlation function. The parameter λ2 brings information about the size of the
configuration. The full conditional distribution of λ2 is tightly concentrated, allow-
ing little movement in the Markov chain. In order to improve mixing our algorithm
is based on moving D = (d1, . . . ,dn) and λ2 together, but making proposals only to
λ2 and obtaining the proposal for D such that the distances amongst the proposed
points in D space keep the current correlations the same. See Schmidt and O’Hagan
(2003) for more details.

3 A projection model onto the IR2 manifold

The generalization of the previous section, of making the D-space of dimension
C > 2, aims at overcoming possible folding when the D-space is assumed to be 2D.
These foldings might be a result of local influences in the covariance structure of the
process. These local influences might be measured through some covariates, and the
previous section provided a way of considering covariates in the mapping function
d(·). However, as the number of monitoring locations increase so does the number
of parameters to be estimated. This affects the efficiency of the MCMC algorithm
because of the unidentifiability problems described in section 2.3. In this section
we discuss a simpler approach of the latent space model by defining the stochastic
process in a 2D manifold.

Define the C-space as the G-space coordinates and any covariates e.g. elevation,
such that C ≥ 2. The real world is a 2D manifold (or surface) in C-space because
at any point in G-space (which is 2D) all the covariates have specific values. We
now define a model for the stochastic process in this C-space by assuming a partic-
ular specification for the function d(·) of the previous section. More specifically, we
assume the function d(x) maps the locations from G onto the larger space C. Coo-
ley et al. (2007) use covariates (but not geographic coordinates) to model extreme
precipitation.

Different from the previous section, here we assume Yt ∼ N(µt,Σ) and we
make inference about µt and Σ in a single framework. Assuming we observe y =
(y1, · · · ,yT )T , the likelihood function is

p(y | µ,Σ) ∝
T∏

t=1

| Σ |−1/2 exp

{
−1

2
(yt − µt)

′Σ−1(yt − µt)

}
.
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Consider x and x∗ arbitrary locations in G-space, and let dP (x) = (x1, x2,
z1(x), · · · , zC−2(x))′ map the locations from G into the larger C-space. As out-
lined in (Paciorek and Schervish, 2006), a covariance structure that generalizes to
anisotropic covariance functions and account for directionality is one that uses the
Mahalanobis distance between locations. Let

Mh(dP (x),dP (x∗)) =

√
(dP (x)− dP (x∗))′Φ−1 (dP (x)− dP (x∗)), (3.1)

be the Mahalanobis distance between dP (x) and dP (x∗), which is a function of the
arbitrary positive definite, C × C, matrix Φ. A valid covariance function might
assume, e.g.

Cov (Y (x, t), Y (x∗, t)) = σ2 gP (Mh(dP (x),dP (x∗))), (3.2)

where σ2 represents a common variance across the field. Note that this is a particu-
lar case of the general covariance structure defined in equation (2.1), as v(x) = σ2,
∀x. And the function g(·) of equation (2.1) is replaced by function gP (·) which
is a function of the Mahalanobis distance Mh(·; ·). One suggestion is to make
gP (−Mh(dP (x),dP (x∗)) = exp {−Mh(dP (x),dP (x∗))}, which provides a valid co-
variance structure.

As we have different decay parameters in each of the C directions, the mapping
function dp(·) allows the geographical locations to shrink/stretch linearly in each
dimension but not the completely general deformation that the GP in equation
(2.5) allows. We denote the mapping function dP (·) as a projection model because
the inverse function d−1

P (·) can be viewed as a projection from C onto G-space. And
the covariance function above leads to an anisotropic covariance structure when
viewed in G-space.

We now discuss the prior distribution of the parameters in the model. We assume
σ2 follows an inverse gamma prior distribution with parameters aσ and bσ, that is,
σ2 ∼ IG(a, b). For Φ, one possibility is to assume it as a diagonal matrix, such that
the element in the ith diagonal is associated with the decay of the correlation in the
ith direction. As we assume the first two components of dP (x) as the geographical
coordinates, one might assign the same decay parameter for the first two directions,
such that Φ−1 = diag(1/φ1, 1/φ1, 1/φ3, · · · , 1/φC). We assume independent, inverse
gamma prior distributions for φ1, φ3, · · · , φC with parameters ei and hi. When fixing
e1 and h1 in the prior distribution of φ1, one suggestion is to assign its prior mean
such that the practical range (when the correlation is equal to 0.05) is reached at half
of the maximum distance between geographical locations and the variance is fixed at
some reasonably large value. For the other decay parameters, φ3, · · · , φC , the prior
distributions are also chosen following the idea of practical range but considering
the scale of each direction separately. A more general possibility is to assume an
inverse Wishart prior distribution for Φ with a relatively small number of degrees of
freedom ν, such that ν > C−1, and a diagonal scale matrix V. The elements of the
main diagonal of V can be fixed by following the idea of practical range discussed
above.
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Note that in the case of a diagonal matrix Φ, if we assume an identity mapping
function, such that dP (x) = x, and use the same decay parameter φ1 for both
geographical directions, we obtain an isotropic correlation function.

Modelling the mean structure As this model has a significant smaller number
of parameters when compared to the general one discussed in section 2, we propose to
estimate the mean and the covariance structures of the process in a single framework.
In particular, we assume µt is decomposed as the sum of two components, a purely
spatial term and a temporal one, such that

µt = U′β + F′tθt. (3.3)

The matrix U, n× q, contains the q covariates that vary only across space and
might be a subset of the covariates Z(x), such that q ≤ C − 2. The coefficient
vector β, q×1, measures the effect of each covariate on the mean structure µt. One
suggestion is to assign a q-variate normal prior distribution to β, with mean vector
mβ, and diagonal covariance matrix Cβ.

The temporal structure is captured through dynamic linear models (West and
Harrison, 1997), such that Ft is a n×p matrix containing parameters which describe
the mean temporal structure of Yt, e.g. a baseline, seasonal components, time-
varying covariates, etc. The p-dimensional coefficient vector θt evolves smoothly
with time, such that θt = Gθt−1+ωt with ωt ∼ N(0,W), and θ0 ∼ N(m0,C0), with
m0 and C0 known. G is a p× p known matrix, and W is a p× p matrix, describing
the covariance among the elements of θt. In particular, we assume W as a diagonal
matrix with elements W = diag(W1, · · · ,Wp), and we assign independent inverse
gamma prior distributions to each Wi, such that Wi ∼ IG(aW , bW ), i = 1, · · · , p.

A nugget effect ν2 can be accommodated in this model by making

Σij = σ2 exp {−Mh(dP (xi),dP (xj))}+ ν2 ∆(dPi
,dPj

), (3.4)

where ∆(dPi
,dPj

) = 1 if xi = xj, and 0 otherwise. If a nugget effect is included in
the model, we assume ν2 ∼ IG(c, d), a priori, for known c and d.

3.1 Inference procedure for the projection model

The parameter vector to be estimated in the projection model is ϑ = (β, σ2,Φ, ν2,W,θ),
where θ = (θ0,θ1, · · · ,θT ). Following the prior specification discussed above, and
the Bayes’ theorem, the posterior distribution of ϑ is proportional to

π(ϑ | y) ∝
T∏

t=1

| Σ |−1/2 exp
{
−1

2
(yt −U′β − F′tθt)′Σ−1(yt −U′β − F′tθt)

}

×
[

T∏
t=1

| W |−1/2 exp
{−0.5 (θt −Gθt−1)

′W−1 (θt −Gθt−1)
}
]

× exp
{−0.5(θ0 −m0)′C−1

0 (θ0 −m0)
}

exp
{
−0.5(β −mβ)′C−1

β (β −mβ)
}

×
p∏

i=1

[
W−aw+1

i exp
{
− bw

Wi

}]
(σ2)−aσ−1 exp

{
− bσ

σ2

}
(ν2)−c−1 exp

{
− d

ν2

} C∏

i=1
i 6=2

φ
−(ei−1)
i exp(−hi/φi).
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Analogously to the previous model, we resort to MCMC to obtain samples from
the posterior distribution of ϑ. In particular, we use the Gibbs sampling with some
steps of the Metropolis-Hastings algorithm. The coefficient vector β has a multivari-
ate normal posterior full conditional distribution. The elements of θ are sampled
through the forward filtering backward (FFBS) sampling algorithm, introduced by
Frühwirth-Schnater (1994). The posterior full conditional distribution of each Wi

follows an inverse gamma distribution. The elements of Φ, σ2, and ν2 are sampled
through Metropolis-Hastings steps.

3.2 Spatial interpolation

From a Bayesian point of view, spatial interpolation is based on the posterior pre-
dictive distribution, which we now obtain for the projection model.

We aim at predicting the process at a set of locations which have not been ob-
served, say Yout

t = (Y (xu1, t), · · · , Y (xuL, t))′ at unobserved locations xu1, · · · ,xuL.
For each time t, samples Yt(x) are being generated from the multivariate normal
distribution, Nn(µt,Σ), the posterior predictive distribution, p(yout

t |y), is given by

p(yout
t |y) =

∫

ϑ
p(yout

t |y,ϑ)π(ϑ|y)dϑ. (3.5)

From the theory on the multivariate normal distribution (Anderson, 1984), it follows
that the joint distribution of Yt and Ytu , conditioned on ϑ, is given by(

Yout
t

Yt
| ϑ

)
∼ Nn+L

((
µout

t

µt

)
;

(
Σout Ψ′

Ψ Σ

))
, (3.6)

where µout
t is a L-dimensional vector representing the mean of the unobserved lo-

cations at time t; µt is a vector comprising the mean of the observed sites; Σout

is a covariance matrix of dimension L and each of its element is the covariance of
the process between unobserved locations. Each line of the matrix Ψ, n × L, rep-
resents the covariance between the ith monitored location and the jth unobserved
one, i = 1, · · · , n and j = 1, · · · , L. From the theory of the multivariate normal
distribution we have that

Yout
t |yt, ϑ ∼ NL

(
µout

t + ΨTΣ−1 (yt − µt) ;Σout −ΨTΣ−1Ψ
)
. (3.7)

The integration in (3.5) does not have an analytical solution, however approxima-
tions can be easily obtained through Monte Carlo methods (Gamerman and Lopes,
2006). For each sample q, q = 1, · · · , Q, obtained from the MCMC algorithm, we
can obtain an approximation for (3.5), by sampling from the distribution in (3.7)
and computing

p(yout
t |yt) ≈ 1

Q

Q∑
q=1

p(yout
t |ϑq). (3.8)

The approximation above is also suitable to compare models. Usually, one holds a
set of observations out from the inference procedure and uses the posterior predic-
tive distribution to compare all fitted models in terms of their prediction abilities.
Greater values of p(yout

t |yt) in (3.8) point to the best model.
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4 Applications

We fit the proposed models to two datasets, solar radiation in British Columbia and
mean temperature in Colorado. In particular, as the number of locations for the
temperature data is relatively large, n = 151, we only fit the projection model to
this data, as the MCMC algorithm for the general latent space model tends to take
extremely long to converge when n is too big.

4.1 Solar radiation in British Columbia

Here we revisit the solar radiation data set collected in southwestern British Columbia,
Canada, which was analysed by S&G and S&O. Accurate mesoscale prediction of so-
lar radiation is important for the development of solar energy systems. The network
consists of n = 12 monitoring stations and we have available a sample covariance
matrix obtained after removing the temporal effect from the original data, as anal-
ysed by S&G. The sample covariance is based on observations at n = 12 locations,
from March 22nd to September 20th, for 4 years, from 1980 until 1983, so that
T = 732.

Station 1 lies at a very different elevation compared to the remaining ones. The
analysis performed by S&O led to a lack of bijectivity of the mapping. Hay (1984)
gives a description of the location of the monitored sites. He goes on to say that
the network includes a transect along the major orographically induced climatic
gradient in Vancouver (from south to north), a transect from the coast to a distant
but reasonably accessible inland location and a number of stations located in the
central urban area and sparsely populated rural areas. We would expect that the
correlation among the locations in the North-South direction would change faster
than in the East-West direction. Because of these geographical characteristics of
the network, we make use of the coordinate system in G-space standardized in all
directions. The coordinates of the monitoring stations are shown in Table 1.

We fit three different models to this dataset. The first is the same fitted by
S&O which assumes the D-space to be 2D. More specifically, the d(·) function maps
locations from IR2 onto IR2 and the prior mean of d(·) assumes m(xi) to be the
identity function, that is m(xi) = x′i. This model is denoted by IR2 → IR2. The
second model assumes the D-space to be 3D, and uses elevation in the prior mean
of d(·) such that m(xi) = (xi, elevationi)

′. This model is denoted by IR2 → IR3.
As models IR2 → IR2 and IR2 → IR3 differ only in the specification of the mapping
function d(·) we assume the same prior distribution for all parameters which are
common in both models. More specifically, we assume the correlation function
g(·) in equation (2.3) to have K = 3 components, a nugget plus two components
of squared exponential correlation functions. For λk, the decay parameters in the
correlation function g(·), we assume a log-normal prior distribution with mean 0.1
and variance such that the probability of λk being greater than 2 is 0.01. The prior
degrees of freedom of the variances were set equal to 10, because we do not have
strong prior belief about the variances of the process at different locations being
similar. For this example we set bd, the roughness parameter of the prior correlation
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Table 1: Latitude, longitude and elevation of the 12 monitoring sites of the solar
radiation data set.

Site Latitude Longitude Elevation
(o′) (o′) (m)

1 49.23 123.05 1128
2 49.19 123.04 114
3 49.16 123.07 122
4 49.11 123.10 5
5 49.00 123.08 3
6 49.13 122.42 5
7 49.08 122.17 125
8 49.02 122.17 60
9 49.01 122.22 61
10 49.06 122.38 11
11 49.13 123.06 63
12 49.16 123.15 93

function of the locations in D space, to 1.7. As previously discussed, σ2
djj

(j = 1, 2

in the IR2 → IR2 model, and j = 1, 2, 3 in the IR2 → IR3 model) controls how far the
sites are expected to move a priori. We assign inverse gamma priors to σ2

djj
, where

due to the coordinate system E(σ2
djj

) = 0.5 with 30 degrees of freedom, a priori.

A projection model (PM) We also fit a model with covariance structure
based on the projection proposal described in section 3. As for this data we only
have the sample covariance matrix available, based on equation (2.1), we propose
to model the covariance as

ΣPM
ij =

√
v(xi) v(xj)

[
a1∆(dPi

,dPj
) + a2 exp

{
−

√(
dPi

− dPj

)′
Φ−1

(
dPi

− dPj

)}]
,

where dPi
= (xi, elevationi)

′, and Φ = diag(φ1, φ1, φ2). For φ1 and φ2 we assign
inverse gamma prior distributions, with parameters based on the idea of practical
range. Notice that this is a much simpler version of the latent space model as we
do not need to estimate the locations of the sites in D-space. The parameters to be
estimated are ΘPM = ((v1, · · · , vn), a1, a2, φ1, φ2). The MCMC algorithm is similar
to the one described in section 2.3, with the advantage that here, at each iteration
of the MCMC, we skip the steps of sampling d and σ2

dii
, i = 1, 2, 3.

For model IR2 → IR2 we have run the chain for 90, 000 iterations and, to avoid
autocorrelation within the chains, we stored every 35th element after considering a
burn in of 20, 000 iterations. For model IR2 → IR3, the MCMC was run for 200, 000
iterations, with a burn in of 20, 000 and after the burn in, we kept every 90th itera-
tion. For the projection model (PM), we let the MCMC run for 50, 000 iterations,
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considered a burn in of 10, 000 iterations, and stored every 40th iteration. For all
models, convergence was checked using the tools available in the software CODA
(Plummer et al., 2006). Model IR2 → IR3 required a longer chain to reach conver-
gence when compared to models IR2 → IR2 and PM. Recall that PM does not have
unknown locations in D-space, therefore does not suffer from the unidentifiability
problems discussed in section 2.3.

For models IR2 → IR2 and IR2 → IR3 we obtain the estimated correlations versus
the Euclidean distance among locations in D-space, and compare these estimates
with the observed correlations versus the distances in G-space to check if the models
are correcting the anisotropy present in the data. Model IR2 → IR3 tends to provide
estimated correlations closer to the theoretical correlation induced by the resepctive
model, than model IR2 → IR2 (Figure 1).
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Figure 1: Observed correlation versus distance in G-space (1st column), posterior
mean (solid line) and associated 95% posterior credible intervals (dashed lines) of
the correlation function for the solar radiation data set under models IR2 → IR2,
and IR2 → IR3 (2nd and 3rd columns) . The abscissae of the plots in the 2nd and
3rd columns represents the average distance obtained in D-space.

For the latent space idea it is interesting to investigate how the locations moved
in D-space in order to provide an isotropic covariance structure. Following Schmidt
and O’Hagan (2003) we used the Procrustes superimposition to compare the original
locations with their mapping onto D-space for model IR2 → IR3 (Figure 2). One
of the difficulties in considering a D-space of dimension bigger than 2 is how to
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present the shape of the configuration in the latent space. Here we use a 2D plot
in which the third coordinate is represented by the radius of circles centered at the
respective sites in D-space. Those sites which are labelled by −si mean that they
have a negative third coordinate. Sites s4, s5, s6, s11 and s12 have a negative value
of the third coordinate. Site 1 is quite far from all the others, and site 2 is the
closest one to it. Sites 4 and 12 are quite close in D-space and both are closer to
site 5. The latter being the least correlated with site 1 as it moves further down in
the direction of the third coordinate (Figure 2).
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Figure 2: Procrustes superimposition of the posterior mean of the locations in D-
space onto G-space under model IR2 → IR3. The original coordinates are labelled
as Gi, whereas the coordinates in D-space are labelled si. Sites labelled with −si

represent a negative posterior mean of the third coordinate in D-space.

4.1.1 Prediction of the augmented covariance matrix

To compare the different models we held out site 6 from the inference procedure,
fitted all three models and predicted the augmented covariance under each of the
fitted models. The algorithm to obtain the predicted augmented covariance matrix
follows Schmidt and O’Hagan (2003). Once we have samples from the posterior
distribution of θ, we can estimate the covariance between a unmonitored location
and the monitored ones following the model specification in equation (2.1). Note
that the posterior distribution of the variance at a unmonitored location is equal to
its prior distribution. Also, the posterior distribution of d(·) at a unmonitored loca-
tion is obtained through the properties of the partition of the multivariate normal
distribution. See Schmidt and O’Hagan (2003) for details.

We obtain quite similar interquartile ranges of the posterior predictive distribu-
tion for the covariance between site 6 and all the others. The most complex model,
IR2 → IR3, tends to provide smaller ranges of the interquartile ranges. Except for
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sites 7, 8 and 9 the project model tends to provide very similar results to the most
complex fitted models (Figure 3).
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Figure 3: Interquartile ranges of the predictive augmented covariance matrix be-
tween site 6 and all the others, when site 6 is held out from the inference procedure.
The triangle represents the observed covariance and the open circles represent the
median of the posterior predictive distribution under the respective model. The
solid line represents the ranges under model IR2 → IR2, the dashed line under model
IR2 → IR3, and the dotted line under model PM.

4.2 Mean temperature in Colorado

As pointed out by Paciorek and Schervish (2006) the Geophysical Statistics Project
at the National Centre for Atmospheric Research has posted a useful subset of the
United States climate record over the past century from a large network of weather
stations. In particular the state of Colorado presents interesting variations in terms
of topography. There are in Colorado 367 locations which have colocated informa-
tion about temperature, precipitation, latitude, longitude and elevation
(http://www.image.ucar.edu/Data/US.monthly.met/CO.shtml). We concentrated
on a subset of locations after removing from the data locations which had more than
3 missing values during January 1991 and December 1997. We model the monthly
mean temperature, obtained as the average between the monthly maximum and
minimum temperatures, observed at n = 151 locations, between 1991 and 1997.
The final sample has less than 0.8% of missing observations. From a Bayesian point
of view this is not a problem as these missing observations are viewed as parameters
and are estimated together with the remaining parameters of the model. For spatial
interpolation purposes, we held the time series of L = 20 locations out from the
sample to compare the fitted models.
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The elevations present in the sample vary from 811m up to 3537m. Apparently,
many locations are close together when mapped in the geographical space, but once
elevation is taken into account they seem to be more distant from each other (1st
panel of figure 4). Exploratory data analysis suggests that elevation is negatively
related with mean temperature. The time series in figure 4 show a clear seasonal
pattern.
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Figure 4: Geographical locations and observed time series of the mean temperature
data in Colorado. In the first panel the size of the crosses are proportional to
observed elevation, the middle panel shows the location of the 20 stations held out
for spatial interpolation, and the third panel shows all 151 observed time series.

Following the model proposed in section 3, the mean vector µt in equation (3.3)
is assumed to have components

µt(xi) = U(xi)β + F(xi)θt with θt = Gθt−1 + ωt,

where U(xi) is standardized elevation at location xi, θt = (θt1, θt2, θt3)
′, F(xi) =

(
1 1 0

)
, i = 1, · · · , n, W = diag(W1,W2, W2), and G =




1 0 0
0 cos 2π/12 sin 2π/12
0 − sin 2π/12 cos 2π/12


,
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to account for a baseline and a seasonal pattern in each time series. We fitted two
models with exact the same mean structure but different covariance structures:

- Isotropic model (IM): for this model we assume dP (xi) = xi in equation (3.4)
and Φ = diag(φ1, φ1);

- Projection model (PM): here we assume dP (xi) = (xi, U(xi))
′ in equation

(3.4) and Φ = diag(φ1, φ1, φ2).

We assumed the following prior specification for both models. For β we assigned
a zero mean normal distribution with variance equal to 100. For θ0 we assumed a
zero mean multivariate normal distribution, with a diagonal covariance matrix with
elements fixed at 100. For σ2 and ν2 we assigned inverse gamma prior distributions
with infinite variance and mean based on the mean of ordinary least square fits
to each of the observed time series. For the decay parameters in the correlation
function we assigned inverse gamma prior distributions with infinite variance and
mean based on the idea of practical range, described in section 3. For each model
we let the chains run for 40,000 iterations, considered 5,000 as burn in, and stored
every 30th iteration to avoid autocorrelation within each chain. Convergence for
each model was checked by running two chains starting from very different values.

The projection model provides an estimate of the nugget effect which is consider-
ably smaller than that obtained under the isotropic model (3rd column of Figure 5).
There are many sites which are very close in G-space but they become further apart
when elevation is taken into account (first panel of Figure 4). The projection model
seems to capture this information, as the differences in the observed measurements
for sites close together in G-space might not be due to measurement error. This
suggests that the presence of elevation in the covariance structure of model PM is
capturing some structure left in the residual of the isotropic model, even after ac-
counting for its influence in the mean of the process. The posterior distribution of
the coefficient of elevation, β, seems to be affected by the presence of elevation in
the covariance structure of the underlying spatial process (1st column of Figure 5).

Although not shown here, the parameters in the temporal structure of the model
(θ) seem not to be affected by the different assumptions about the covariance struc-
ture Σ.

The decay parameter related to the geographical space seems to be smaller under
PM than under IM. This seems reasonable as in the PM the observed correlation is
being modelled as a function of geographical and elevation distances (Figure 6).

The effect of the different estimates of the decay parameters in the respective
correlation functions can be further noticed when we look at the estimate of the
correlation between a particular location and all the others in the sample (Figure
7). We present the posterior mean of the correlation between the highest, as well
as the lowest, points in the sample and all the others, under models IM and PM.
Different from IM, PM provides estimated correlations which change with direction
when viewed in G-space (Figure 7).

Regarding the L = 20 locations held out from the inference procedure, appar-
ently model PM tends to provide ranges of the 95% posterior predictive distribution
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Figure 5: Posterior distribution of the coefficient of elevation, β, the variance of
the spatial process, σ2, and the nugget effect ν2, under the isotropic and projection
models (rows) for the mean temperature data. In each panel, the vertical dotted
line is the posterior mean of the respective parameter.

slightly smaller than those obtained under model IM (Figure 8). The predictive
ability of each model can be compared using different measurements. The mean
square error (MSE) is based on the average square difference between the posterior
mean of the predictive distributions and the observed values. Based on all estimates,
20 locations and 84 instants in time for each location, the MSE under PM is equal
to 1.876, whereas under IM it is equal to 1.999. A similar result is obtained if we
compare the average range of the 95% posterior predictive interval obtained under
each model. For IM, the average range is equal to 5.043, whereas for PM it is equal
to 4.396. These measurements suggest that model PM performs better than IM in
terms of spatial interpolation.

To compare observed and fitted values, Bastos and O’Hagan (2009) suggest a
generalization of a chi-square test for correlated observations. For each time t we
have the predicted values at the 20 locations held out from the inference proce-
dure. Following Bastos and O’Hagan (2009) we compute the Mahalanobis distance
between the predicted and observed values. More specifically, for each time t we
compute,

Dt(y
out
t ) = (yout

t − µ∗
t )

TΣ∗−1

(yout
t − µ∗

t ), (4.1)

where µ∗
t and Σ∗ are the moments of the normal distribution defined in equation

(3.7). As for each time t = 1, · · · , 84 we are estimating the process at 20 locations,
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(rows). In each panel, the vertical dotted line is the posterior mean of the respective
parameter.

we expect Dt(·) to be equal to 20. Bastos and O’Hagan (2009) mention that extreme
values (large or small) of Dt(·) indicate a conflict between the observed and predicted
values. For this example, for each time t there seems to be a different model closer
to 20 (left panel of Figure 9). However, if we compute 1

84

∑84
t=1 | Dt(y

out
t )− 20 |, the

average of the absolute differences between the observed distance and 20, PM pro-
vides a value equal to 15.78, whereas IM results on 16.95. The predictive likelihood
also provides evidence that PM performs better in terms of spatial interpolation as
the average of the predictive likelihood under IM is −33.044, and equal to −30.275
under PM (right panel of Figure 9).

5 Discussion

We proposed models which make use of covariate information in the covariance
structure of spatial processes. This is useful when modelling nonstationary spatial
processes, as when predicting the process at unobserved locations of interest, the
predictions are heavily dependent on the specification of the underlying spatial co-
variance structure. Following the model proposed by S&O we assume the latent
space to be of dimension C > 2. This generalization seems appealing, but some
points are naturally raised for discussion. Increasing the dimension of the latent
space results in the increase of the parameters to be estimated. This affects directly
the efficiency of the MCMC, making the convergence of the chains more difficult.
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The latent model has a complex hierarchical structure. It is important to recog-
nize that without constraints there is an inherent unidentifiability due to the way
d(·) appears in the g(·) function in equation (2.1). First, any transformation of
coordinates d(·) in D which leaves distances unchanged (translation and/or rota-
tion) is observationally equivalent. Second, because g(·) has unspecified roughness
parameters λk, any transformation which multiplies all distances in D space by a
constant is also unidentifiable. Although our MCMC algorithm is built to recognize
these unidentifiability problems, as the number of sites increases this may cause the
MCMC to take very long to converge.

In the solar radiation example, there were no apparent problems of convergence
because of the low number of gauged sites and the great number of replicates in
time. In the general case of making the D-space C dimensional, there are n + Cn +
2K +C +1 parameters to be estimated. Therefore, there is a problem of parsimony
related to the choice of the dimension of D-space. The bigger the dimension of
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Figure 8: Posterior summary of the predictive distribution for locations 1 and 13 (see
middle panel of Figure 4) held out from the inference procedure under models IM
and PM (rows). In each panel, the solid line is the mean of the posterior predictive
distribution, the dashed line is the actual observed value, and the shaded areas
represent the 95% posterior predictive credible intervals.

the D-space the better is the fit of the observed correlations, but the bigger is the
number of the parameters in the model. Also, making the D-space of dimension
greater than 2 makes it more difficult to visualize the shape of the locations in this
space. Here we managed to show the Procrustes superimposition of the locations in
D onto the original configuration in G-space, by using 2D plots with circles around
the gauged sites. The radius of these circles were proportional to the absolute value
of the component which represents the third coordinate of the sites.

As an alternative to the general model, we introduced in section 3 the projection
model which has a significant smaller number of parameters but is still able to cap-
ture interesting correlation structures present in the data. As the covariates are a
function of the geographical locations, the spatial process can be viewed as defined
in a 2D manifold, and the covariance structure proposed in equation (3.2) provides
an anisotropic covariance function in IR2. Because of its considerably smaller num-
ber of parameters, the MCMC did not take long to converge, even for the mean
temperature data with n = 131 locations. In this example, the spatial interpolation
to unmonitored locations under the projection model performed better than the
usual, simpler, isotropic model. Although both models include elevation in their
respective mean structure, the projection model still performs better because it is
able to reflect that not only do temperature tend to be lower in the mountains but
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Figure 9: Values of Dt(·) (see equation (4.1)) and posterior predictive likelihood (see
equation (3.8)) for each time t = 1, 2, · · · , 84 based on the 20 locations held out from
the inference procedure (see Figure 4). In both panels, the solid line corresponds to
IM and the dashed line to PM.

they are less highly correlated for given geographical distance.
This projection model can be used as an investigation tool to understand better

the covariance structure of the spatial process of interest, and see which covari-
ates might provide better estimates for unmonitored locations of interest. Here we
explored an exponential correlation function in the projection model using the Ma-
halanobis distance between dP (x) and dP (x∗), for x and x∗ ∈ G-space. But different
correlation functions might be used in equation (3.2), for example, one possibility
is to assume gP (·, ·) as the product of valid correlation functions in each of the C
directions, e.g. gP (dP (x),dP (x∗),Φ) =

∏C
i=1 gPi

(|dP (x)i−dP (x∗)i|, φi), where each
gPi

(·, φi) is a valid correlation function with parameter vector φi, and dP (x)i is the
ith component of the vector dP (x). Stein (1999)[p. 54] mentions that the behavior
of such covariance functions depend heavily on the choice of the axes. Therefore, it
is crucial to understand the process under study in order to use suitable covariates
in the covariance structure. Because of its relative simplicity, the projection model
allows that the mean and covariance structures of the underlying Gaussian process
are estimated in a single framework.

We believe the use of covariates might also be explored in other approaches that
handle nonstationary spatial processes. Calder (2008) makes use of wind measure-
ments in the kernel convolution approach of Higdon (1998). However, the informa-
tion about the wind field is taken at a single location, and this is used to estimate
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directional variograms which are used to build the covariance matrix of the Gaus-
sian kernels of the convolution. We are currently investigating ways of including
the wind field (considering measurements over a grid of locations) on the covariance
structure of environmental spatial processes.
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Complexidade (NUMEC)), USP, Brazil, for giving the opportunity to discuss initial
ideas on this project during the Workshop on Stochastic Processes Applied to Spatial
Statistics: Multi-scenario analysis and stochasticity in environmental prediction, in
December 2007.

References

Anderson, T. (1984) An Introduction to Multivariate Statistical Analysis. John
Wiley & Sons, Inc.

Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004) Hierarchical Modeling and
Analysis of Spatial Data. New York: Chapman and Hall.

Bastos, L. and O’Hagan, A. (2009) Diagnostics for Gaussian process emulators.
Technometrics, 19, 39–48.

Calder, C. A. (2008) A dynamic process convolution approach to modeling ambient
particulate matter concentrations. Environmetrics, 19, 39–48.

Cooley, D., Nychka, D. and Naveau, P. (2007) Bayesian spatial modelling of extreme
precipitation return levels. Journal of the American Statistical Association, 102,
824–840.

Cressie, N. (1993) Statistics for Spatial Data. Revised Edition. John Wiley & Sons,
Inc.

Damian, D., Sampson, P. and Guttorp, P. (2003) Variance modeling for nonstation-
ary spatial processes with temporal replication. Journal of Geophysical Research
Atmospheres, 108, (D24) Art. No. 8778.
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