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CHAPTER ONE.      INTRODUCTION TO FIRST BAYES
1.1   What is First Bayes?
First Bayes is a program intended to help with teaching and learning elementary Bayesian Statistics.  It deals with quite simple and standard statistical models, with an emphasis on obtaining some understanding of how the Bayesian approach works.  It is not a package for doing statistical analysis of practical data.

First Bayes is offered free to anyone interested in teaching or learning Bayesian Statistics, provided it is not used for profit.  It may be freely copied and distributed, simply by copying the entire set of files distributed with First Bayes.  The files must not be edited or altered in any way, nor may any charge be made for distributing First Bayes.  Requests to use First Bayes for any commercial purpose must be directed to the author, Tony O'Hagan.  The author retains copyright of First Bayes, including the computer code and this manual.

1.2   Main features of First Bayes
   Four standard one parameter models are offered—binomial data, gamma data, Poisson data and normal data with known variance.  A major feature of First Bayes is that such data may be analysed using an arbitrary mixture of distributions from the conjugate family.  By this means, essentially arbitrary prior distributions can be defined, allowing the user to obtain an excellent understanding of how the likelihood and prior distribution are combined by Bayes' Theorem.  Prior, likelihood and posterior can be plotted on a single "triplot".

   Distributions from any of thirteen standard families may be plotted and many useful summaries computed—mean, mode(s), median, quartiles (or any other quantiles), standard deviation, highest density intervals and probabilities of arbitrary intervals.  Furthermore, arbitrary mixtures of distributions from any family can be defined and examined in the same way.  Another key feature of First Bayes is that all these plots and summaries are available whenever such distributions arise in First Bayes.  This includes prior, posterior and predictive distributions in analysis of one-parameter models, and corresponding one-dimensional marginal distributions in analysis of more complex models.

   Analysis of two simple kinds of linear model are also offered.  One is the case of one or more normal samples with common but unknown variance (one-way analysis of variance), and the other is simple linear regression.  Marginal distributions may be computed (and examined) for arbitrary linear combinations of the location parameters.  In the case of regression, scatter and residual plots can be produced.

   Predictive distributions are available in a variety of forms for all analyses.

   For all analyses, the current posterior distribution can be turned into the prior distribution in order to add further data sequentially.

   Whenever the user makes changes to data or prior distributions, all analyses, distribution summaries and plots are automatically updated.

   A file of simple datasets is provided, and the user may add new data to this file, or may create new files. 

1.3   Genesis of First Bayes

First Bayes began life as a non-Windows program called MSB.  I wrote MSB at Warwick University in 1987 in connection with an undergraduate course in elementary Bayesian statistics.  The Windows user interface and a number of other features were added in 1994 after I moved to Nottingham University.

MSB was originally written in the APL language, and one impetus for writing First Bayes was the fact that powerful Windows-based development tools became available for APL.  If you don't enjoy programming, you have probably never used APL.  If you do enjoy programming but haven't used APL you are missing a real treat.  If you are an APL user, you know what I mean!  I discovered APL in 1976, and have been hooked ever since.  I have used many other languages, but nothing compares with APL for power and elegance—APL is a joy to program in.  But more than that, it provides such a wonderful development environment that complex applications can be built and debugged incredibly quickly.

All this discussion of APL is not just gratuitous advertising, but is relevant to the story of First Bayes.  MSB was distributed by Warwick University as part of a grant I obtained from the Computer Board under the UK Government's "Computers in Teaching Initiative".  The grant was to explore the use of APL in teaching statistics, and the development of MSB was as much a response to that initiative as an aid to the course I was teaching in Bayesian Statistics.

The graphics in MSB rested on a system, the Warwick APL Graphics System (WAGS), which was also distributed as part of that initiative.  WAGS was originally written by Ewart Shaw at Warwick University.  It was further developed and rewritten by Tuks Gillespie and myself in 1990 as part of another initiative, the APL Statistics Library (ASL).  ASL was supportd by the British APL Association.  In creating First Bayes in 1994, I further developed WAGS, porting it to the Windows environment.

APL is an interpreted language, and is not compiled.  As a result any application written in APL needs an APL interpreter to run it.  APL is a complex language and interpreters are not cheap.  Another impetus for writing First Bayes was that the new Windows version of APL allowed applications to be distributed with a free "run-time only" interpreter.  This has the advantage of allowing First Bayes  to be distributed as a completely self contained package at no charge, which was never possible with MSB.

First Bayes uses the "Dyalog APL/W" APL interpreter, which is produced by Dyadic Systems Ltd.  The file DYALOGRT.EXE supplied with First Bayes is the run-time version of Dyalog APL, and two versions of this file are available.  The DYALOGRT.EXE supplied with First Bayes version 1.3 for modern versions of Windows (95, NT, 98, 2000, XP and later) runs version 9.0 of Dyalog APL, while the DYALOGRT.EXE supplied for the old versions of Windows (3.1 or 3.11) runs version 7.3.  If, however, you have the full Dyalog APL interpreter, you can use that to run First Bayes instead of DYALOGRT.EXE.  Just load the First Bayes workspace (called 1STBAYES) in the usual way.  In that case, as an APL programmer, you will be able to gain access to the underlying APL code.  I will be happy to provide advice on using First Bayes as a native APL application, but you must not distribute First Bayes after you have broken into it and modified or edited it in any way.  To do so would violate my copyright on the code and the name "First Bayes".

For more information about Dyalog APL/W, contact Dyalog Limited, Grove House, Lutyens Close, Chineham Court, Basingstoke, Hampshire RG24 8AG, United Kingdom (www.dyalog.com).
1.4   Changes since version 1.2

Version 1.3 was the first update of First Bayes for nearly two years, and no changes have been made since 1996.  The software is extremely stable and still fills a need for simple help with teaching and learning Bayesian statistics. 

Version 1.3 fixes a few small bugs, and I am not aware of any bugs remaining.
This version has upgraded the underlying DyalogAPL/W interpreter to either version 7.3 (for Windows 3.1 or 3.11) or version 9.0 (for Windows 95, NT or later), from version 7.0.  These interpreters differ in that version 9.0 allows access to windows tools that are only available in 95 or NT, but so far I have not made use of any of those features in First Bayes, so the First Bayes code (file 1STBAYES.DWS) exists only in one form, for use on both systems.  However, later versions may begin to use the advanced features, and then users of the very old versions of Windows will simply not be able to run any such version of First Bayes.  

Two main changes to First Bayes have been made in version 1.3.  The first is to reprogram the windows handling to take advantage of the Multiple Document Interface.  This allows all the various windows opened by First Bayes (for distributions, analyses, plots and data handling) to be sub-windows of the main First Bayes window, and with nicer properties.  Maximising and minimising windows is easy, and the problems with version 1.2 of icons getting lost behind the backdrop, and difficulty switching between windows, have been eliminated.  The other irritation of having to complete a prior distribution window before gaining access to the underlying analysis window (and the even worse problems if you opened a plot window from the prior distribution window) has also gone.

The second main change is to introduce another one-parameter analysis, for gamma data with a gamma prior distribution.  I have also introduced an extra scaling parameter in the Poisson analysis.  These changes were proposed by Phil Dawid.  Together they allow analysis of data from an underlying Poisson process, either in the form of counts of events in fixed time intervals (Poisson data) or in the form of waiting times for one or more events (gamma data).  There is an educational benefit here in the opportunity to illustrate the implications of the Likelihood Principle for uninformative stopping rules.

Finally, density and triplots now sit on the axis, and I have corrected a number of misprints in this manual (thanks in particular to Norman Thomson for pointing some of those out).

1.5   Numerical accuracy
The numerical computations in First Bayes are not intended to be highly accurate.  The facility to work with arbitrary mixtures of distributions has been implemented by quite simplistic numerical integration.  Probabilities for these distributions are typically computed to no more than about 3 decimal places.  Highest density intervals and quantiles are only as accurate as the probabilities from which they are computed.

1.6   Disclaimer
I have tried to make First Bayes robust and reliable, but do not accept responsibility for loss or damage to data, software or hardware or any other consequence, direct or indirect of using First Bayes.  Anyone using First Bayes implicitly acknowledges this disclaimer and accepts responsibility for all consequences.

1.7   First Bayes support

First Bayes has its own website

http://www.firstbayes.co.uk/
where you can find all sorts of information.  You can email me from the web pages if you have problems with First Bayes, and of course I will be delighted to receive suggestions or ideas.  In the last resort, you can use the old snail-mail regular post; my address appears at the end of Chapter Nine.  I should say that I make no promises to respond, whether to problems, bugs or suggestions.  I will do my best, but you have not paid for First Bayes, so you have not paid for support!

CHAPTER TWO.      INSTALLATION

2.1   Hardware and software requirements
First Bayes makes low demands on computer resources, and will run on any PC produced within the last ten years, running any of the principal versions of the Windows operating system.

2.2   Installation - general
[The following description is for users who do not already have the Dyalog APL system.  If you have Dyalog APL version 7.2 or later, you can instead just copy the files 1STBAYES.DWS and 1STBAYES.1BD into a directory on your WSPATH.  You will also need this manual.  Finally, you should also copy the First Bayes icon 1B.ICO into your APL base directory.]
Copy all the files (which you will generally obtain by downloading and unpacking the zip archive 1B.ZIP) into an appropriate directory on your hard disk.  (You might create a directory called 1b for the purpose.)  Then proceed as follows.  (These instructions are for Windows Vista or later.  If you have the older versions of Windows, you should have downloaded a different version of this manual with relevant instructions.  In case of problems, contact me as explained at the end of this manual.)
Before you can run First Bayes you need to set up appropriate instructions in the Registry.  The supplied file 1B.REG contains appropriate date, but if you have installed the First Bayes files in a directory other than c:\1b you will first need to edit 1B.REG using any suitable editor (e.g. the Notepad editor supplied with Windows) to replace the occurrences of c:\1b with the appropriate directory.  (Note that instead of c:\1b you will actually see c:\\1b in 1B.REG, and in general a backslash in the directory path should be typed as a double backslash in this file.)   Note also that if you wish to have many First Bayes windows open at one time, it may be beneficial to instruct First Bayes that it can use more RAM.  In the supplied file 1B.REG, there is a line "maxws"="2048", telling First Bayes that it has 2MB (2048KB) available.  This can be increased generally up to the total amount of RAM less 2MB (expressed in KB).  When you are finished editing 1B.REG (if necessary), install it in the Registry by one of the following methods:

· Double-click on its icon.  If you have previously edited 1B.REG, you may find that this only reopens the editor, in which case …

· Right-click on its icon and select “Open with” and then “Regedit”.
Next you will need to install fonts.  First open the start menu (Windows button on the bottom left of the screen) and select "Control panel".  Then click on "Appearance and Personalization".  Next, click on "Install or remove font".  This will open a big list of installed fonts. Right-click on a blank bit of this window and select "Install new font".  Now you can navigate to your First Bayes folder, click on the two fonts "Dyalog Std" and "Dyalog Std TT" and install them.  You can then close this window.  (If you want to check the fonts are installed, you may need to refresh the font list first.)
Finally, you need to create a shortcut to First Bayes.  From the start menu select "Computer", then the hard drive and folder containing the First Bayes files.  With the right mouse button, drag the 1stbayes.dws file onto the desktop.  From the list of options in the menu which then opens, select Create Shortcut(s) Here.  Now click with the right mouse button on the shortcut icon and from the resulting menu select Properties.  Click on the Shortcut tab in the Properties dialog box.  Two things need to be changed here.  One is to alter the text in the Target field, to read

c:\1b\dyalogrt .\1stbayes inifile=Software\1stBayes

(or instead of c:\1b enter whatever folder you have placed the First Bayes files in).  Then click on the Change Icon button, select Browse, then in the file dialog box locate the folder in which the First Bayes files are and select 1b.ico (or just 1b if you have file extensions switched off).  Click on Open, then OK and OK again.  The First Bayes icon should now appear as the icon for the shortcut on the desktop.  Do be very careful when typing into the various fields here.  Spaces are important, as is the difference between letter l and figure 1.  If the path to the folder where you have placed First Bayes files contains a space (e.g. if you put it in a subdirectory of “Program Files”), then you should enclose this part in double quotes, e.g.

″c:\Program Files\1b\dyalogrt″ .\1stbayes inifile=Software\1stBayes

2.5   Starting First Bayes
Once First Bayes has been installed it can be started by double-clicking on its icon, just like other Windows programs.  First Bayes generally conforms to the Windows standard for keyboard and mouse usage.  This manual assumes that you are familiar with Windows.

CHAPTER THREE.      THE MAIN MENUS

3.1   The First Bayes window
When you start First Bayes, you will see the First Bayes main window filling the screen (unless you are fortunate enough to have graphics resolution better than 600x800 super VGA).  This can be minimised to an icon in the usual way, to gain access to other applications without closing First Bayes.  (It can also be resized as usual, but resizing windows in First Bayes is not recommended as all the windows which are created in a run of First Bayes are designed to be a particular size and to fit within a main window of the default size.)  Windows that you create with First Bayes (distribution, analysis, data and plot windows) all appear in the main First Bayes window, and if minimised to an icon the icon will also appear inside the First Bayes main window.  They can be dragged around inside the main window but cannot move outside it.  All that will appear when First Bayes is started, however, is the First Bayes title bar (showing the name and version number, the maximise, minimise and quit buttons), the First Bayes menubar, and a blank area in which other windows can be created using the menubar.

All the various features of First Bayes are accessed from the menubar

3.2   File Menu
Selecting the "File" menu gives two or three menu items.  The "Data" item opens the Data Form, for defining, saving and retrieving data.  See Chapter Five.

The "Print active plot" appears only when you have created one or more plots and one of these is the active window in First Bayes.  Clicking on this item will send a copy of that plot to your default printer.

The "Exit" item exits First Bayes.  An alternative way to exit in standard Windows is to double-click on the top left corner of the title bar as usual, or in Windows 95 to click on the X button in the the top right corner of the title bar..

3.3   Distributions menu

Selecting any item from the "Distributions" menu opens a Distribution Form to set up and examine a distribution from the corresponding family, or a mixture of distributions from that family.  See Chapter Six.

3.4   Analysis menu
Selecting any item from the "Analyses" menu opens an Analysis Form to carry out an analysis of the corresponding type of data.  See Chapters Seven and Eight.

3.5   Options menu
Selecting the "Options" menu gives just one menu item.  Selecting the "APL Data entry" item toggles on the facility to enter and edit data in the Data Form using the native APL language.  (The presence of a tick mark against this item shows that the facility is switched on.)  See Sections 5.5 to 5.8.

3.6   Windows menu
The Windows menu has two sections.  The lower section, which is absent when First Bayes starts up, lists all the windows that you have opened in First Bayes, and clicking on any of these will bring that window to the front and make it the active window.  

The upper section has four items, offering different ways of rearranging the windows and icons in the First Bayes main window area.  The first three choices rearrange the open windows.  They all have the effect of resizing the windows, which is not generally recommended when there are open "forms", i.e. distribution, analysis and data windows, since these are designed to be kept at their original default size.  However, these options can be useful for arranging a collection of plots so that they can be seen together.  Selecting "Cascade" arranges the windows in an overlapping stream starting at the top left.  "Tile Horizontally" and "Tile Vertically" resize the windows to be non-overlapping, so as to fill the First Bayes window.  The precise effect of these choices is hard to define because Windows is inclined to do its own thing with these requests, and it is generally best to experiment.

The "Arrange" option operates on the icons of minimised windows, arranging them neatly along the bottom of the main First Bayes window.

3.7   Help menu
Version 1.3 of First Bayes offers only one item, "About First Bayes", which displays a window of information about the First Bayes package.  Future versions are intended to offer genuine on-line help from this menu.

CHAPTER FOUR.      USING FIRST BAYES
4.1   Selecting windows
When several windows have been opened from the menubar, the window you may want to see or work with at any time may have become wholly or partly obscured by other windows.  If it is only partly obscured, clicking on some visible part will usually bring it to the front and make it the active window.
Whether or not the window you want is partly visible, you can bring any of the various First Bayes windows to the front and make it the active window by use of the Windows menu as described in Section 3.6.

4.2   Working with the active window
You work with the currently active window in the usual Windows way.  Buttons are pressed by clicking on them.  A field for entering or editing data is accessed by clicking in that field and then typing from the keyboard.  It is important to remember that First Bayes will need to know when you have finished working in an edit field, so nothing will happen until you leave the field, or in some cases, pressing the Enter key will also cause the edited data to be acted on.  Alt key shortcuts and Tab or Shift-Tab are other ways to move around the windows as usual.

4.3   Closing and minimising or maximising windows
These operations also follow the usual Windows conventions.  Double clicking the top left of the window frame in standard Windows, or top right in Windows 95, will close it.  There is usually a Quit button to perform the same function.  Clicking on the maximise or minimise button in the top right of the window frame will either reduce it to an icon or magnify it to fill the whole of the First Bayes main window area.  When maximised, the maximise, minimise and quit buttons for the maximised window are added to the menubar and its own title is added to the First Bayes title.  Double clicking an icon restores a minimised window to full size.

Graphics windows are created by pressing appropriate buttons in other windows.  The graph is linked to its parent window so that if data in the parent are changed then the graph will also be updated.  If the relevant data in the parent window are somehow deleted, or if the parent window is closed, it is natural to close the graphics window.  However, when this happens, you are asked to confirm that you want the graphics window closed.  If you answer No, the graphics window stays open but is no longer linked to its parent window.  The graph is then fixed.

4.4   Printing graphics
When a graphics or plot window is active, an extra item "Print active plot" appears in the File menu as described in Section 3.2.  Clicking on that will send the graph to your default printer.

CHAPTER FIVE.      DATA
5.1   Data stored on file
The First Bayes Data window allows you to load data into memory from a file, for use in Bayesian analyses, to manipulate data, or to save data back to a file.  The Data window is opened by selecting the Data option from the File menu on the menubar.  The first time you open the Data window after starting First Bayes, First Bayes tries to locate a suitable data file.  If it finds one or more files with the .1BD extension in the current directory, then it uses the first of these as its current data file.  (You may then select an alternative file if you wish - see the next paragraph.)  If it does not find such a file, a standard Windows file selection dialogue box will appear for you to select a file.  You may select any file which already contains First Bayes data, or may name a file which does not already exist.  In the latter case, First Bayes will create and initialise that file.  (If you do not give a file extension, .1BD will be added automatically.)  The selected file becomes the current data file.  On subsequent times that you open the Data window, the last used data file automatically becomes the current data file.

When the Data window is open, you may change the current file by clicking on the Change button.  A file selection dialogue box will open for you to select the new file.

The Data window appears as a form with three main regions.  On the left is a region concerned with data stored on the current data file.  In order for stored data to become available for use in the First Bayes session they must be loaded into memory.  This is done by selecting the required item of data in the list box and then pressing the Load button (beneath the box).

The selected data item may also be deleted from the file by pressing the Delete button (also beneath the File list box).  You will be asked to confirm the action, because data deleted from file are lost.  However, see Section 5.3 for information on saving data from memory to file.

5.2   The display region
The central region of the window displays the data currently selected in either the File list box or the Data Loaded list box (whichever was last selected).

Notice that a data item in First Bayes has three constituent parts.  It has a name, which may be as long as you wish, and made up of any combination of letters (upper case or lower case), the numbers 0 to 9 and the underscore characters.  A name may not include spaces, and must begin with a letter.  A data item also has a description, which may also be as long as you wish (and may also include spaces), or can be empty.  Finally of course a data item has data!  A data item in First Bayes refers to a vector of numbers.  These appear in the Data field in the central portion of the window.  Although they may typically occupy several lines (and perhaps more lines than the Data field can show at a time), they are thought of as just a single line of data, wrapping round from one line to the next as necessary.

This central region is also used for editing data in memory or for defining new data.  See the next Section for details.

5.3   Data loaded
The right-hand region refers to data currently loaded in memory.  It has a list showing the names of the data items in memory, and an array of buttons to the right and beneath.

 Save.  The Save button stores the currently selected data item to the current data file on disk.  If an item with that name is already on file the new item replaces it.  The new item now becomes the first item on the file, and so appears at the top of the File list.

 Erase.  The Erase button removes the currently selected item from memory.  You cannot, however, remove the "Nul" data item, which is required always to be loaded in First Bayes to denote an empty data vector.

 Edit.  The Edit button makes the central display region, showing the currently selected data item, active.  You can then edit the description or data associated with that name in memory.  (Data with the same name on file are not changed unless you subsequently use the Save button to over-write them.)  You can also edit the name, to create a new data item in memory (or over-write one already existing with the new name) as a copy or edited copy of the currently selected item.  The OK and Cancel buttons also become active—see below.

 New.  The New button clears the central display region, and then acts like the Edit button, allowing you to create a new item in memory from scratch.

 OK.  The OK button is active and set to the default button (and so may be pressed simply by pressing the Enter key) when the central region is active (and if a valid Name is showing).  Pressing it sets the data item from the display into memory, over-writing any existing item of that name.  The central region, and the OK and Cancel buttons, then become inactive again.

 Cancel.  The Cancel button is active when the central display region is active (and may be pressed also by pressing the Esc key).  Pressing it aborts the editing operation.  The central region is reset to show the data item currently selected, and becomes inactive (together with the OK and Cancel buttons).

 Quit.  The Quit button closes the Data window.

5.4   Effect of changes
If data in memory, that are currently being used by an analysis window, are edited or deleted, then appropriate changes are made automatically to that window when it is next selected.

5.5   APL data entry
Normally, when you ask for edited data to be stored in memory, by pressing the OK button, First Bayes checks that the Data field contains only a sequence of numbers separated by spaces.  Any special characters will cause an error message and you will be expected to correct the Data field.  If, however, "APL data entry" is turned on from the "Options" menu, this checking is not done.  The contents of the Data field are treated as an expression in the native APL language.  This allows two special facilities.  First, it allows data to be generated randomly using one of First Bayes' built in random number generators.  Second, it allows someone familiar with the APL language to perform complex operations on data.  These facilities are described in the next two sections.  Notice, however, that an important consequence of turning off the data checking is that if the Data field does not contain a valid APL expression when the OK button is pressed, then First Bayes will crash and exit immediately, losing all your calculations in progress.

5.6   Random numbers
When "APL data entry" is on, random numbers can be created as data by typing one of the following expressions (and nothing else) in the Data field.  The words must be in capital letters.

 <p> BINGEN <n>, where <p> is a probability and <n> is a positive integer, both separated from the word BINGEN by one or more spaces.  This generates <n> binary numbers, i.e. zero or one, with each having probability <p> of being one or probability 1  <p> of being zero.

 <m> POISGEN <n>, where <m> is a positive number and <n> is a positive integer, both separated from the word POISGEN by one or more spaces.  This generates <n> random numbers from the Poisson distribution with mean <m>.

 <m> <v> NORMGEN <n>, where <m> is any number, <v> is a positive number and <n> is a positive integer, all separated from each other and from the word NORMGEN by one or more spaces.  This generates <n> random numbers from the normal distribution with mean <m> and variance <n>.

 CURGEN <n>, where <n> is a positive integer separated from the word CURGEN by one or more spaces.  This generates <n> random numbers from the current distribution, which is whatever distribution was last used by First Bayes.  To ensure that the current distribution is the one you intend to draw random numbers from, you should set that distribution up in a Distribution window (opened from the "Distributions" menu on the menubar) immediately before using the Data window.  (Analysis windows use distributions in such a way that the effect on the current distribution can be difficult to predict.  So avoid interacting with Analysis windows before using the CURGEN expression.)

When you press OK to define these data, you will not see the data immediately.  To view the random data, select another data item in either of the list boxes, and then select again the newly created or edited data item.

5.7   Other APL expressions
When "APL data entry" is on, APL expressions can be used to create data in complex ways.  In general you need to understand the APL language, and preferably be familiar with the APL keyboard mapping in Dyalog APL/W, to make the most of this feature.  (Remember, any error will cause First Bayes to crash.)  However, a number of useful cases are given in the next Section for the general user.

First some important general points.  Many of the APL operations require special characters not normally available from the keyboard.  The "+" key to the right of the numeric keypad toggles the keyboard between its normal state and a special APL keyboard.  If you use this to obtain special characters do not forget to toggle back to the normal keyboard, or you are likely to get strange characters appearing where you do not want them!

Negative numbers are denoted in APL by the special "high minus" sign, which can be obtained as Shift-2 in the APL keyboard.  An alternative is to enclose every negative number in parentheses, when you can use the ordinary minus sign.  An ordinary minus sign not isolated in this way can have unpredictable effects if you do not understand APL.

A data item in memory can be referred to by using its name preceded by a lower case d (with no space between).

The operations described in the next section (and many more) can be combined into complex APL expressions if you understand the language, but otherwise you are strongly advised to use them just one at a time.  Save the result each time as a new named item, press the New button to create a new item and apply the next operation to the saved item by name.  In this way you can build up complex operations step by step.

5.8   Simple and useful expressions
In the following, <data>, <data1> or <data2> means an item of data appearing either as a list of numbers separated by spaces or as a named item in memory (see above).

 <log symbol> <data> takes the natural logarithm of each number in <data>.  <log symbol> is obtained as Ctrl-Shift-8 from the APL keyboard, and appears as a star in a circle.

 <base> <log symbol> <data> takes the logarithm to base <base> of each number in <data>.  <base> must be a single positive number.

 <exp symbol> <data> takes the exponential of each number in <data>.  <exp symbol> is obtained as Shift-P from the APL keyboard, and appears as a star.

 <num> <exp symbol> <data> takes <num> raised to the power of each number in <data>. <num> must be a single number.

 <data> <exp symbol> <power> raises each number in <data> to the power <power>, which must be a single number.

 <num> <take symbol> <data> takes a starting or ending portion of <data>.  <take symbol> is obtained as Shift-Y from the APL keyboard and appears as an up-pointing arrow. <num> must be a single integer.  If positive, <num> numbers are taken from the start of <data>, and if negative then <num> numbers are taken from the end of <data>.  If you ask for more numbers than there are in <data>, the extra will be made up of zeros.

 <num> <drop symbol> <data> achieves the same effect as the lase case but by specifying not how many numbers to take from <data> but how many not to take.  <drop symbol> is obtained as Shift-U from the APL keyboard, and appears as a down-pointing arrow.  If  <num> is positive, <num> numbers are dropped from the start of <data>, and if negative then <num> numbers are dropped from the end.

 <num> <repeat symbol> <data> takes <num> numbers from <data>, repeating them if necessary.  <repeat symbol> is obtained as Shift-R from the APL keyboard, and appears as a Greek letter rho.  <num> must be a positive integer.  <num> numbers are taken from the start of <data>, but if there are not enough numbers in <data> more will be taken by going back to the start of <data> and reusing them as often as necessary.  For example, 11 <repeat symbol> 0 1 will create the data 0 1 0 1 0 1 0 1 0 1 0.

 <data1>/<data2> selects numbers from <data2> as specified by <data1>.  <data1> and <data2> must be of the same length, and the numbers in <data1> must be non-negative integers.  The result is obtained by looking at the first number in each, then the second number in each, and so on.  The result begins by being empty, then at each step if <n1> and <n2> are the corresponding numbers in <data1> and data2> then <n1> copies of <n2> are added on the end of the result so far.  For example, 0 1 0 1 0/1 2 3 4 5 produces the result 2 4.  And 0 1 2 1 0/1 2 3 4 5 produces 2 3 3 4.  This operation is most commonly used with <data1> a list of zeros and ones created by an operation of the type described next.  Another use is to generate binary data as needed for the Binomial sample analysis (see Chapter Seven), by for example 27 8 / 0 1.

 <num> <test symbol> <data> carries out a test on each number in <data> by comparing it with <num>.  <test symbol> is one of the usual mathematical symbols for "less than", "less than or equal to", "equal", "greater than or equal to", "greater than" or "not equal to", obtained as Shift-3 to Shift-8 respectively in the APL keyboard.  <num> must be a single number.  If the relationship defined by the chosen <test symbol> is true for a number in <data> the result is a one, otherwise it is a zero.  For instance, 1 < 0.2 0.8 1 2 will produce the result 0 0 0 1.  Combining with the previous operation, data can be selected according to a test criterion.  For instance, if NUMS is a data item and the result of 0 < dNUMS is saved as item NUMTEST, then the result of dNUMTEST/dNUMS will be to select only the positive numbers in NUMS.

 <data1>, <data2> joins the numbers of <data1> and <data2> to produce a single data item.

 <data1> + <data2> adds the numbers in <data1> to those in <data2>.  <data1> and <data2> must be the same length.  Alternatively if either <data1> or <data2> is a single number, it is added to each number in the other.  Subtraction, multiplication and division are obtained using the minus, "times" and "divide" symbols.  The "times" symbol is obtained by pressing the key with the equals sign from the APL keyboard, and the "divide" symbol by pressing that key shifted.

CHAPTER SIX.      DISTRIBUTIONS 

6.1   Examining distributions

When you open a Distribution form by selecting any of the thirteen distribution types from the 

"Distributions" menu, it has two main regions.  The right-hand region is for defining a particular distribution by setting its parameter values.  The left-hand region is the larger of the two, and is for examining various properties of the distribution specified on the right.  We begin by describing the parts of the left-hand region, because it is an important component of the First Bayes approach.  Identical regions appear on all the types of Analysis forms, for examining prior posterior, marginal or predictive distributions as the case may be.

The top part always shows the name of the specified distribution, including its parameter values, and some key summaries of it—its mean, median, mode(s), standard deviation, variance and quartiles.  If the name is too long to appear in the box, left and right scroll buttons will appear beside it.  Click on a button to scroll by one character, or double-click to scroll by ten characters at a time.

The lower part allows you to select various other summaries to examine.

 Probabilities.  If you enter two numbers, say a and b, in the Probability edit field, the probability contained in the interval [a, b] will be shown alongside.

 Highest density intervals.  If you enter a number, say p, in the HDI edit field, the p% highest density interval will be computed and shown alongside.  For a unimodal distribution this will always be two numbers giving the ends of the interval.  For a multimodal distribution, there might be two or more separate intervals comprising the "highest density interval", whose ends are shown as successive pairs of numbers.

 Quantiles.  If you enter a number, say q, in the "% ile" field, the q-th percentile will be shown alongside.  (The 25-th, 75-th and 50-th percentiles are of course already shown as the quartiles and median.)

 Calculate.  The calculations above are not done, and the results displayed, until you indicate that you have finished editing.  You do this either by leaving that edit field, for instance by pressing Tab to move to the next object in the form, or by pressing the Enter key.  The Enter key actually activates the Calculate button when you are in this part of the form, and there is rarely a need for you to press the Calculate button explicitly by clicking on it.

 Plot.  Pressing the plot button causes a window to be opened showing a plot of the probability mass function or density function.

Everything in this region will be updated if you make any changes to the distribution specified in the right-hand region.  (The same is true of the identical regions which appear on Analysis forms.)

6.2   Mixtures
In the centre of the right-hand region are edit fields for you to enter values for the  parameters of the distribution, and below these are various buttons.  Above the parameters is an edit field called Parameter set, and two small buttons.  The explanation of this, and of the Weight field lies in one of the key features of First Bayes.

First Bayes allows arbitrary mixtures of distributions from the same family to be defined and examined.  For instance 0.4 N (0, 1) + 0.6 N (2, 2) is a mixture with weight 0.4  given to a standard normal distribution and weight 0.6 to the N (2, 2) distribution.  A mixture distribution is therefore defined by specifying a number of sets of parameter values with a weight given to each set.  For instance, the example has two parameter sets.  Set 1 is (0, 1) with weight 0.4, and set 2 is (2, 2) with weight 0.6.

6.3   Defining a distribution
The form shows just one parameter set and associated weight at a time.  To view and/or edit a different parameter set, type its number in to the Parameter set edit field, or click on the up or down buttons beside it to move to the next or previous set.

When you have defined parameter values for the first parameter set, a weight of 1 is automatically inserted.  A valid distribution is now defined, and the left-hand region becomes active.  If you wish to define a mixture distribution, you will now continue with the second parameter set.  Note that the weights you define need not add up to one.  First Bayes automatically scales the weights internally so that they sum to one (and this is shown in the name of the distribution as displayed on the left).  So for instance to give equal weights to the parameter sets you can just give weight 1 to each.

Further details about defining parameter sets will become clear in describing the action of the four buttons below the Weight field.

 Reset.  Pressing this button clears all the parameter sets and gives you a blank form to 


begin again with.  (See also Section 7.2 for the action of this button when a 


Distribution form is opened to specify a prior distribution.)

 Delete.  This button deletes the parameter set currently showing.

 Next.  This is the default button when you are operating in the parameter and Weight fields, 


and so is effectively pressed by pressing the Enter key.  Its action is to move to the 


next parameter weight field that is empty (or has an invalid value).  Note that if there 


is any empty (or invalid) field the Parameter set field and its up and down buttons are 


inactive.  You cannot move to another parameter set if the current one is not 


complete (including Weight).  You must first either complete it or delete it with either 


of the preceding buttons.  If the parameter set (and Weight) is complete, the Next 


button accepts the parameter set, updates the data in the left-hand region, activates 


the Parameter set field and buttons, and places the cursor on the up button (so that 


pressing Enter again will move you to the next parameter set).

 Quit.  This button closes the window.

6.4   Particular distributions
The operation of all kinds of distribution is as described above.  They differ only in the number of parameter fields and their names.  None of the distributions should be unfamiliar to a Bayesian statistician.  A classical statistician, on the other hand, might find the Beta, Beta-Binomial, Gamma and Inverse Chi-Square distributions new or unusual.  Their definitions could be found in many standard textbooks.

Again, a classical statistician might be very familiar with the Chi-Square, F and t distributions, but might be surprised by the numbers of parameters given to them in First Bayes.  In classical statistics these distributions are invariably met only in standardised forms.  In Bayesian statistics it is convenient to give them all an extra scale parameter, and to add a location parameter (median, equal to the mean if the degrees of freedom exceed 1) to the t distribution.  The role of these parameters will be obvious, or should become obvious if you experiment with them.

CHAPTER SEVEN.      ONE PARAMETER ANALYSES

7.1  The four one-parameter analyses
Selecting any of "Binomial sample", "Gamma sample", "Poisson sample" or "Normal sample, known variance", from the "Analysis" menu on the menubar, opens an Analysis window that is basically the same for each of these analyses.  Each allows a prior distribution from the conjugate family (including mixtures) to be combined with data of the appropriate type.

 Binomial sample.  The data in this case are independent trials with probability  of success in each.  They are therefore a series of ones (denoting success) and zeros (denoting failure).  The distribution of the number of successes is binomial.  The conjugate prior family for  is the Beta family.

 Gamma sample.  The data in this case are iid observations from a gamma distribution with known shape parameter k and mean k/.  They are therefore a series of positive numbers.  The conjugate prior family for  is the Gamma family.

 Poisson sample.  The data in this case are iid observations from a Poisson distribution with mean t, for some known constant t.  They are therefore a series of non-negative integers.  The conjugate prior family for  is the Gamma family.

 Normal sample, known variance.  The data in this case are iid observations from a Normal distribution with mean  and known variance v.  The conjugate prior family for  is the Normal family.

7.2   Defining the prior
When you open an analysis window for one of these analyses, nearly all of it is inactive until you define both a prior distribution and some data..

Pressing the Edit button opens a distribution window for the conjugate family of distributions.  You see up the prior distribution in this window in exactly the same way as described in Chapter Six.  You can examine the relevant summaries and even plot the distribution, to ensure that it represents the appropriate prior information.  When you close the prior distribution window, the distribution that was defined there becomes the prior distribution for the Analysis window, and its name is displayed there.  Pressing the Edit button again allows you to go back to the prior distribution window for you to edit the prior.  The currently defined prior distribution is already set up in the Distribution window for you to edit (and the Reset button will now restore that setting, rather than clearing all parameter sets).

7.3   The extra parameter field
Except in the case of the "Binomial sample", the Analysis window also includes an edit field for you to enter the known value of the relevant parameter - the shape parameter k for the "Gamma sample" case, the time scaling parameter t for the "Poisson sample" case, and the variance parameter v for the "Normal sample, known variance" case (all initially set to 1).

7.4   Defining the data
The data are defined from a drop-down menu labelled Data.  Initially, the data are set to Nul, i.e. no data at all.  Clicking on this field drops a menu of all data items currently available in memory (see Chapter Five), from which the desired item can be selected.

7.5   Examining the posterior distribution
The left-hand region of the Analysis form is a display of distribution details, just as in a Distribution window (see Section 6.1).  Initially, it shows the posterior distribution of , but may be switched to show a predictive distribution—see Section 7.6 below.  Once a prior distribution has been defined, this region becomes active.  The data will then be Nul, and so the posterior distribution will just be the prior distribution.  So at this stage the display is effectively repeating information that was available in the prior distribution window.  Once some actual data have been defined, however, it will display the new posterior distribution.  It may be used in the same way as described in Section 6.1 to obtain appropriate posterior inferences.

7.6   Predictive distributions
A small region on the right of the window deals with predictive analysis.  An edit field allows you to specify the number of observations whose sum or mean (depending on the analysis) is of interest.  Pressing the "Show predictive" button then switches the left-hand region to display the predictive distribution of that sum or mean.  This button actually toggles the left-hand display, and will therefore switch the display back to showing the posterior distribution of .

The precise meaning of the predictive distribution for each analysis is a follows.

 In the Binomial sample analysis, the prediction is for a number of future independent trials, also with probability  of success.  These will be zero or one, as with the data for this analysis, so their sum is the number of successes in those future trials.  The predictive distribution will be Beta-Binomial.

 In the Gamma sample analysis, the prediction is for the sum of a number of future iid gamma observations with shape parameter k and mean k/.  The predictive distribution will be F.

 In the Poisson sample analysis, the prediction is for the sum of a number of future iid Poisson observations with mean t.  The predictive distribution will be Negative Binomial.

 In the Normal sample, known variance analysis, the prediction is for the mean of a number of future iid Normal observations with mean  and the same known variance.  The predictive distribution will be Normal.

7.7   Other controls
There are three buttons at the bottom of the right-hand region of the window.

 The Triplot button opens a graphics window showing the prior density, likelihood (normalised to integrate to 1) and posterior density on a single plot.  This is extremely useful for gaining understanding of how Bayes' Theorem works.  It is of course updated automatically if you change either the prior distribution or the data.

 The Update button resets the prior distribution to the current posterior distribution, and the data to Nul.  The analysis is then ready to receive more data, to compute a new posterior distribution.  The original prior distribution and data can no longer be edited, but this new prior distribution (the old posterior) can be edited if desired.

 The Quit button closes the Analysis window.

CHAPTER EIGHT.      LINEAR MODELS

8.1   Two linear models
Through the two items "Normal sample(s), unknown variance" and "Regression Data" in the "Analysis" menu, First Bayes offers analysis of the two simplest kinds of linear model.  They provide opportunities to learn about the Bayesian approach in multiparameter problems.

 In the Normal sample(s), unknown variance, analysis the data are one or more samples, each consisting of iid Normal observations with unknown mean and variance.  Each sample is a separate data item in First Bayes.  The variances of the various samples are assumed equal, so the unknown parameters comprise an unknown mean for each sample plus a single unknown variance.  In the case of a single sample, the mean is called "Mu" by First Bayes, and for more than one sample the means are "Mu1", "Mu2",... .  The variance is called "Sig".

 In the Regression data analysis, two data items of the same length are required.  One is the X-data, the values of the "independent" or "regressor" variable.  The other is the Y-data, the corresponding observed values of the "dependent" or "response variable. The model is the usual simple regression model

yi =  +  xi + ei ,

where the eis are Normally distributed with zero mean and unknown variance.  First 

Bayes calls  and  "Alpha" and "Beta", and the variance "Sig".

The Analysis window has basically the same features in both cases, although there are a number of differences.  The left-hand region of the window is, as usual, used to display data about a distribution, and may be used as described in Section 6.1.  In these analyses, the distribution being displayed can be changed in a variety of ways, see Sections 8.4 and 8.5.

8.2   The prior distribution
In these analyses you cannot specify genuine prior information.  The initial assumption is shown as "Weak" prior information, corresponding to a conventional non-informative prior.  As with a one-parameter analysis, the Update button (see Section 8.7) makes the current posterior distribution into the prior distribution.  It is therefore technically possible to create a proper conjugate prior distribution by first inputting some artificial data and then using Update.  A later version of First Bayes may allow the creation and editing of proper prior information, but this will inevitably be a complex task.

8.3   Data
The two analyses require different kinds of data.

The Normal sample(s), unknown variance, analysis first has an edit field at the top of the right-hand region, to enter the number of samples.  The Data area then shows just one sample at a time.  The number of the sample being currently defined may be set by typing in the Sample number edit field or by clicking on the up and down buttons beside it.  Then the data item providing the observations for that sample is set using the drop-down menu as in Section 7.4.  The data are initially set to Nul for all samples.  Once genuine data have been entered for all samples, the posterior distribution is defined and the rest of the window becomes active.

The Data area for the Regression data analysis just has two drop-down menus, which are used as in Section 7.4 to define the X and Y data items.  Both are initially set to Nul.  Once genuine data have been entered for both, the posterior distribution is defined and the rest of the window becomes active.

8.4   Marginal distributions
The left-hand region is initially set to display facts about a posterior marginal distribution.  It can be set to display the posterior marginal distribution of any individual parameter.  It may also display the posterior marginal distribution of any linear combination of the location parameters (i.e. all parameters except "Sig").  Which marginal distribution is displayed is set and shown in the area in the middle of the right-hand region labelled "Margin".

The Margin area contains a field with the name of one of the parameters in it, with an up button beside it, and also an edit field labelled Weight, with another up button beside it.  It is important to recognise the different effects of using the two buttons.  They are superficially similar, because pressing either will cause the parameter name showing to change to the next parameter.  But they affect the Weights differently.

Using the left-hand up button causes the marginal posterior distribution of the parameter now showing to be displayed in the left-hand region.  This is then the distribution of that parameter alone, not a linear combination.  Or more precisely, it is the distribution of the linear combination which gives weight 1 to the parameter whose name is showing, and 0 to all those not showing.  So this button not only changes the name showing but also changes the weights so that this parameter gets weight 1 and all the others 0.

The right-hand up button changes the parameter whose name is showing, and displays the weight currently given to that parameter, but does not change any weights.  Consequently, it does not change the distribution being displayed in the left-hand region.  It is this button that must be used if you want to examine the posterior distribution of a linear combination.  Use it to cycle through the parameters, and type the weights you require in the Weight field for each one.

Notice that if you give a non-zero weight to "Sig", then weights for all the others are automatically set to zero.  Likewise, giving a non-zero weight to any other parameter causes the weight for "Sig" to be set to zero.  You cannot define a combination that includes both types of parameter.

In the case of the Normal sample(s), unknown variance, you can use the linear combinations feature to find posterior distributions of arbitrary contrasts between the sample means.  In this case, there is another way to change quickly the marginal distribution being displayed.  If you change the Sample number in the Data area, the posterior marginal distribution of that sample's mean is shown.  It has the effect of using the left-hand up button in the Margin area to cycle through the parameters.  (So it erases any linear combination you may have set up.)

The main use for linear combinations in a Regression data analysis is to examine the fitted regression line at a particular value of the X variable.  The linear combination with weight 1 for "Alpha" and x for "Beta" is  +  x, the expectation of Y when X = x.

8.5   Predictive distributions
The area in the window for predictive analysis is similar to that in the one-parameter analysis, Section 7.6, and is used in the same way.  However, its meaning is linked to the current marginal distribution as defined in the Margin area.  The predictive distribution calculated is for the mean of a specified number of iid observations with mean equal to the parameter or linear combination of parameters currently defined in the Margin area, and with variance "Sig".  (The predictive analysis is inactive if the current marginal distribution is that of "Sig".)

In a Normal sample(s), unknown variance, analysis, if the current marginal distribution is for the population mean parameter of sample k, then the predictive distribution is for the sample mean of a future sample from the k-th population.

In a Regression data analysis, if the current marginal distribution is that of  +  x, then the predictive distribution is that for the mean of a future sample of iid observations, all with X = x.

As in the one-parameter analysis, Section 7.6, the button "Show predictive" toggles the left-hand display between showing the posterior marginal distribution and the corresponding predictive distribution (and the text on the button changes accordingly).

8.6   Bayesian F tests
Examining the appropriate marginal posterior distributions allows a wide range of posterior inferences to be made in a natural and direct way.  The area of the window labelled "Bayesian F test" supplements these with further inferences that can be useful.

Three alternatives are offered, indicated by the "radio buttons" marked "All 0", "All =" and "Marg 0".  Clicking on any button toggles it on (spot in the middle) or off (empty circle).  Switching one on switches all the others off.  If one button is on, the Test probability field shows the result of calculating a "Bayesian F test".

The explanation of what this test is, is easiest in the case of "Marg 0", which tests whether the parameter (or linear combination of parameters) defined as the current marginal distribution could be zero.  The probability reported is the posterior probability that this parameter is outside the smallest HDI (highest density interval) containing the point zero.  So this is the posterior probability that the parameter in question should be as far or further from its mean as the value zero.  If this is small, the parameter is unlikely to be so far from its posterior mean as zero, and so it is implausible in some sense that it could really be zero.  The "Marg 0" test could be used to test whether a particular contrast in the group means in a Normal sample(s), unknown variance, analysis would be zero.

The "Alt 0" test is similar, but tests all the parameters (except "Sig") simultaneously.  The reported probability is the probability that these parameters could jointly lie as far or further from their joint posterior mean as the origin.

The "Alt =" test in a similar way tests whether all the parameters (except "Sig") could be equal, effectively by looking at whether a set of contrasts might be zero.  In a Normal sample(s), unknown variance, analysis it is equivalent to the classical one-way analysis of variance test.

In general, with weak prior information, these tests are equivalent to classical hypothesis tests.  The probability being calculated is a tail area probability of an F distribution.  (Note the remark on accuracy in Section 1.4—when the data quite strongly suggest that the parameters are not zero or equal, the reported probability is likely to be rounded to zero, meaning only that it is below the level of accuracy of the calculations.)

The tests are all inactive if the current marginal distribution is that of "Sig".

8.7   The remaining Buttons
At the bottom of the right-hand region of the window are two or four buttons.

 The Update button acts as in one-parameter analyses (see Section 7.7).  It turns the current posterior distribution to the prior, and sets all data items to Nul.  The analysis is then ready to receive further data.

 In a Regression data analysis only, the Resid button creates a new window showing a plot of residuals against the values of the X variable.

 In a Regression data analysis only, the Scatter button creates a new window with a scatter plot.  The fitted line is shown together with two standard deviation bounds on either side (a) for  the line itself (derived from the posterior distribution of  +  x) and (b) for a future observation (derived from the predictive distribution of a single observation with mean  +  x).

 The Quit button closes the Analysis window.

CHAPTER NINE.      EPILOGUE
9.1   The Bayesian computer package debate
There has been considerable debate amongst Bayesian statisticians about the wisdom of creating Bayesian computer packages.  One view is that the Bayesian philosophy emphasises the need to think—to think hard about the model, to think hard about the prior information, and to think about what computations on the posterior distribution will yield relevent inferences.  A Bayesian computer package should therefore be an immensely complex thing, allowing the user to experiment and build esentially arbitrary prior joint distributions for all the parameters, to combine this with the likelihood to yield the posterior distribution and then perform essentially arbitrary computations on it to yield any inferences or decisions of interest, and also to experiment with varying the prior, likelihood or decision problem in essentially arbitrary ways in order to study the robustness of the conclusions.

The other view is that such a package is an impossible ideal.  Not only can we not wait for it to be realised, we cannot wait for even a fraction of that functionality to exist.  There are masses of other computer packages already in existence, all applying classical ideas, all tempting the user into believing that thinking is not really necessary.  Bayesian statistics stands no chance if it cannot compete in that market now.

In offering First Bayes, I am very conscious of this dilemma.  I have a great deal of sympathy with the first view, but also see the force of the second.  Perhaps those demanding packages now might be mollified by the progress that the Bayesian approach has made in recent years.  That has been built on the ability to solve problems that classical statistics cannot handle at all.  Highly sophisticated, non-user-friendly software is used.  Yes, we are losing the battle at the lower end.  The great mass of statistics being done in the world is being done with classical computer packages, by people who do not understand statistics properly and cannot properly interpret the answers (especially because the answers they are getting are of the convoluted classical kind).  But the future lies in training the new generations to do and to understand Bayesian statistics, and that will happen if we first win the people who do the training.  Bayesian statistics is starting at the top, by winning the people who train (and particularly those who train the trainers) by showing them its power in difficult problems.  In time, this must percolate down.

Where does First Bayes stand in this debate?  Well, it does not claim or attempt to be for actually doing Bayesian analysis.  It is for teaching, and as such is free to pick and choose what it does.  The choice is made to give the student some appreciation of how the Bayesian approach works and what it can do.  I believe that the one-parameter analysis is a nice example, because it really does allow essentially arbitrary priors.  On the other hand, I have abdicated from that in the case of linear models!  I would have liked to treat prior specification better for those cases, and perhaps I will in a later version.  I did think it important to include some multi-parameter analysis.

I think that the availability of predictive distributions throughout is another good feature, as is the general facility to study distributions and derive appropriate summaries.  Of course this is a long way from offering the computation of a complete range of inferences, and I would like to add more, but it is a start.

I hope you feel, like me, that it was worth doing.  The trainers will need tools, and we should make a start on developing them.

9.2   Future development
First Bayes has been something of a labour of love.  Please give me your suggestions for improvement (or tell me to give up now).  I will not promise to put any of them into effect.  I will not even promise that any further development will take place—I have already spent more time on it than I can really spare!  But do, please, register with me as described in Section 1.7, either by mail, email or through the web site, in order to receive future information about First Bayes.

Among the obvious ways to improve First Bayes are the following.

 Better analysis of linear models, including prior specification.

 More hard copy facilities.

 Ability to read data from text files created outside First Bayes.

 More posterior summary and inference options, like posterior distributions of general functions of parameters, or bivariate contour plots.

 Better or easier data manipulation facilities.

 More accurate probability calculations.

 More families of distributions and more models.

 Online help.

Tony O'Hagan

Department of Probability and Statistics
University of Sheffield
The Hicks Building
Hounsfield Road

Sheffield   S3 7RH
UK

APPENDIX A.      SOME EXERCISES

1  A new treatment protocol is proposed for a certain form of cancer.  The data are binary and contained in the dataset CANCER.  They record which patients survived to six months after diagnosis.  First formulate a beta prior distribution for  = proportion of patients surviving six months, with mean E() = 0.25, and such that P(< 0.4) is approximately 0.85.  Derive the posterior distribution after using the CANCER data, and obtain the posterior mean and the posterior probability  that < 0.4.

2  In viewing a section through the pancreas, doctors see what are called "islands".  The numbers of islands seen in 900 patients are given in the PANCREAS dataset, and, may be summarised as follows.

Number of islands
    0
    1
    2
    3
    4
    5
    6

Frequency

327
340
160
  53
  16
    3
    1

Assuming that the numbers of islands are Poisson distributed with mean , obtain the posterior mean and standard deviation for  from several gamma prior distributions (with shape and scale parameters in the range 1 to 50).  Why is the posterior distribution quite insensitive to variations in the prior?

3  The first six time intervals (in minutes) between eruptions of the "Old Faithful" geyser (GEYSERY data) are 70, 64, 72, 76, 80, 48.  Assume that eruptions occur according to a Poisson process with a rate of  eruptions per hour.  Establish a prior distribution for  with E() = 1 and Var() = 1.  Create a dataset of numbers of eruptions in hourly time slots and obtain the corresponding posterior distribution for .  Comment on your analysis.

4  The BREAKDOWNS dataset contains the times in days between successive failures of a machine.  As in the previous question, obtain the numbers of failures in each week over the period for which the data were collected, and create a First Bayes data set with these data.  (The data cover 21 complete weeks, 147 days, and you can assume that the machine works seven days a week, and that repairs take only minutes.)  The factory manager assumes a Poisson model for these data with average breakdowns per week  7 Her guess as 7 before collecting the data is 2.  She would have been surprised if 7 were less than 0.5 or greater than 4.  Interpret this (rather vague!) prior information in terms of a gamma prior distribution and obtain her posterior distribution.  Obtain her posteror probability that  > 2/7.

5  Now reanalyse the BREAKDOWNS data using the "Gamma data" analysis.  On the assumption of failures occurring in a Poisson process, the times in the BREAKDOWNS data will have exponential distributions with mean 1/  (And remember that the exponential distribution is a gamma distribution with shape parameter 1.)  Using the same prior distribution, show that the same posterior distribution is obtained as in question 4. 

6  The 18th century physicist Henry Cavendish made 23 experimental determinations of the earth's density, and these data are given in the CAVENDISH dataset.  Suppose that Cavendish asserts that the error standard deviation of these measurements is 0.5 (i.e. error variance 0.25), and assume that they are normally distributed with mean equal to the true density .  Define a prior distribution for  with mean 5.4 and standard deviation 0.2 (i.e. variance 0.04).  Derive the posterior distribution and in particular obtain the posterior probability that  > 5.4.

7  Returning to question 1, consider varying the prior distribution in the following ways, and look at the effect on the posterior distribution.

(a)  E() = 0.25,  P( < 0.4) = 0.95.

(b)  E() = 0.25,  P( < 0.4) = 0.99.

(c)  A mixture prior distribution with two roughly equal modes, one near  = 0.25 and one near  = 0.75, but with much lower probability around  = 0.5.

(d)  A mixture prior distribution giving weight 1 to the distribution in (b) above and weight 0.1 to a uniform distribution.

8  Returning to question 6, create datasets containing the first three observations, the next three, the next six and the remaining eleven.  Look at how the posterior distribution evolves as, starting from the same prior distribution, you add the data incrementally in these four stages.  (Confirm that at the end you have the same posterior distribution as in question 6.)

9  Re-analyse the CAVENDISH data again, without assuming a known error standard deviation (and with weak prior information).  Compare the posterior distribution of  with that obtained in question 6.  How good do the data suggest the supposed estimate of 0.5 for the error standard deviation was?

10  A company advertises its product in two areas of the country, using a series of television adverts.  Response to the adverts is measured by monitoring sales at ten shops in each area.  The percentage increase in sales at each shop after the advertising campaign is as follows.

Area I
38
39
37
33
19
28
60
38
29
37

Area N
14
19
52
23
16
20
17
38
  2
21

Assuming independent normal samples with a common variance, compare the success of the campaign in the two areas.

Obtain a 90% highest density interval for  (the variability of response between shops).  Compare the probabilities that  is above the upper limit of this interval and below the lower limit.

11  Consider the three data sets on lengths of cuckoos' eggs.  Letting HS , RW ,  W be the mean lengths of cuckoos' eggs laid in the Hedge Sparrow, Reed Warbler and Wren nests respectively, look at the posterior distributions of HS  RW ,  RW  W  and HS  W .  What evidence is there for the claim that cuckoos tend to lay larger eggs in the nests of larger birds?  (NB. The Hedge Sparrow is the largest and the Wren the smallest of the three species.)

12  Using the Old Faithful geyser data, fit a regression of eruption length on time between eruptions.  Summarise the posterior distribution of the slope parameter .  In particular, how strong is the evidence for an association between eruption length and the length of the preceding time interval?

The next eruption occurs after a wait of 96 minutes.  Plot the distribution of the length of the next eruption.  Compare this with the distribution of the mean eruption length after intervals of 96 minutes, (i.e. + 96 .

13  Locate the data on counts of geese flocks.  Fit a regression of observer 1's counts on the true photographic counts.  Is the simple linear regression model adequate?

The natural logarithms of the first ten data pairs are as follows.

Photo

4.025
3.638
3.219
3.871
3.638



3.091
3.091
3.738
3.526
2.639

Observer 1
3.912
3.219
3.401
3.555
3.219



2.996
2.485
3.526
2.996
2.303

How good a judge is Observer 1?

14  Find and load the data on lengths of eruption times of the Old Faithful geyser.  Open an analysis window for a normal sample with unknown variance.  Apply the eruption lengths data.  Find the following.

(a)  The expected value of the mean eruption length and the posterior probability that  is less than 3 minutes and 45 seconds

(b)  The 95% highest density interval for the variance  of the eruption lengths.

(c)  The probability that the means of future samples of 1,  3, 10 and 100 eruption lengths will be less than 3 minutes and 45 seconds.

15  Edit the eruption lengths data to produce two new data sets.  One should contain only the first 10 times (3.87, 4.00, ..., 1.73) and the other should contain the remaining 90.  Open another analysis window and apply the 10 observations dataset.  Compare the posterior inferences with those above.  Now update (convert the posterior to a prior distribution) and apply the remaining 90 observations.  Confirm that the posterior inferences are now the same as above.

APPENDIX B.      SOLUTIONS TO EXERCISES

1  The standard beta prior distribution with parameters  p and q has mean  p / (p + q).  So we need to set p and q in ratio 1 to 3.  That gives E() = 0.25, and we then need to vary the values of p and q, keeping this ratio, until P( < 0.4) = 0.85.  p = 2.2,  q = 6.6  gives this value (close enough!).  Now quit and put DATA as CANCER.  The posterior distribution then has mean 0.459 and  P( < 0.4 | data) = 0.145.

2  We find that for all gamma priors with parameters in the stated ranges we obtain a posterior distribution with mean close to 1 and standard deviation a little over 0.03.  Essentially, all these prior distributions are much weaker than the data, and this can be seen by looking at the triplots.  In fact, all the standard classical inferences about  for this problem will be numerically close to their Bayesian counterparts.

3  Looking at the six GEYSERY values, we can deduce that the numbers of eruptions in the 7 hours are 0, 1, 1, 1, 1, 0, 2.  After creating a dataset with these numbers, we then select a Poisson data analysis and choose a gamma prior with shape and scale parameters both equal to 1 (to get mean and variances also 1).  Then press QUIT and load the new dataset as DATA.   The posterior distribution has mean 0.875 and standard deviation 0.33.  (The triplot is worth looking at.)  However, this analysis is highly dubious because the assumption of a Poisson process is not supported by the data.  The six observations quoted look too regular, and this is reinforced very strongly by looking at the full GEYSERY data.  They are clearly not a sample from any Poisson distribution.

4  Examining the BREAKDOWNS data, we find the following numbers of failures in each of the 21 weeks: 0 2 1 1 2 0 0 2 1 5 2 1 2 0 1 2 2 4 0 1 1.  A suitable gamma prior distribution for  is found (by a little trial and error) to be one with scale parameter 17.5 and shape parameter 5.  This gives a mean of 2/7, and the probability in the range 0.5/7 (i.e. 0.0714) to 4/7 (i.e. 0.5714) is 0.96.  [You might interpret the prior information differently.  There are no right answers to this question.  In a serous application, further questions would be asked of the manager to make sure of how to interpret her statements.]  We use the "Poisson sample" analysis, but remember to set the time parameter t to 7.  The posterior distribution is then gamma with scale 164.5 and shape 35.  The posterior probability that  > 2/7 (i.e. in the range 0.2857 to 1) is 0.029, substantially lower than the corresponding prior probability, because the actual data show a failure rate of 30/21 = 1.43 per week, substantially lower than 2.

5  We now use the "Gamma sample" analysis with shape parameter left at its default value of 1.  Setting up the same prior distribution as in question 4 (i.e. values 17.5, 5 and 1), and inputting this with the BREAKDOWNS data, we find exactly the same posterior distribution.   This confirms that in Bayesian analysis we obtain the same posterior inferences whether we observe for a fixed time (147 days) or wait for a fixed number of failures (30).

  Defining a N(5.4, 0.04) prior distribution, and setting the data variance to 0.25, we find that the posterior distribution of  is N(5.467, 0.008), with standard deviation 0.092.  P(> 5.4 | data.  The triplot shows that the prior is in general agreement with the likelihood, but is rather weaker.
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7  (a)  Applying the same basic approach as in question 1, we set  p = 6.3,  q = 18.9.  The posterior mean is 0.423 and P(< 0.4 | data) = 0.326.

(b)  Now  p = 13.5,  q = 40.5  and we get E( | data) = 0.383,  P( < 0.4 | data) = 0.665.  These two results, together with question 1, show the influence of steadily strengthening the prior belief (which is then increasingly in disagreement with the data  look at the triplots).
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(c)  The specification is vague, but one could for instance have a mixture of two components, with equal weights, and set  p = 6.3,  q = 18.9  in one and  p = 18.9,  q = 6.3  in the other.  In this case the posterior is also bimodal, with modes at 0.42 and 0.54.  E( | data) = 0.461,  P( < 0.4 | data) = 0.206. The triplot shows clearly that both components of the mixture are in disagreement with the data.

(d)  Keeping  p = 13.5,  q = 40.5  with weight 1.0, and adding a second component with  p = q = 1  and weight 0.1, the prior looks very much as in (b), but now has a small amount of probability spread uniformly over [0,1].  This allows the posterior distribution to be very different from case (b) (and it is instructive to compare the two triplots).  We now find  E( | data) = 0.434,  P( < 0.4 | data) = 0.364.
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8  Using the four datasets in turn, and Updating after each, we find the following results

No. observations

Mean

s.d.
         P(m > 5.4 | data)

    0 (prior)

5.4

0.2

0.5

    3


5.403

0.164

0.508

    6


5.447

0.143

0.630

  12


5.442

0.117

0.639

  23


5.467

0.092

0.765

Notice how the standard deviation drops steadily.  The first six observations were generally higher than the second six, so we see an interesting switch in the progress of the posterior mean.  Notice, however, that even though it is lower after 12 observations than after 6, the smaller s.d. results in P( > 5.4 | data) still increasing.

9  With the unknown variance analysis, the posterior marginal distribution of  is a t distribution with mean 5.485, standard deviation 0.042 and  P( > 5.4 | data) = 0.977.  This is radically different from question 6 because the data themselves suggest a much lower error variance, and this results in much greater precision in the posterior distribution of .  Examine the More Summaries plot with Margin set to Sig Wt 1.   The posterior density of the error variance has negligible probability above 0.12, whereas in question 6 we assumed a value of double this.  The posterior mean of the error variance is 0.04, or about one sixth of the previously assumed value.

10  We first create AREAI and AREAN as new datasets.  Opening an analysis window for normal samples with unknown variance, these are set as the two samples.  If  1 and  2  are the two means, we find that their posterior means are 35.8 and 22.2 respectively.  90% HDIs for them are (29.1, 42.5) and (15.5, 28.9), which do not overlap.  These summaries would already suggest that 1  is larger than  2.  To confirm this properly, select the distribution of 1  2  by giving weight 1 to 1 and 1 to 2.  It has mean 13.6 and variance 33.765.  The probability that it is less than zero is 0.0116, so it is very probably positive.  Alternatively, a Bayesian test of equality of the two gives the test probability of 0.23 (double the previous value, because this is essentially a two-sided test).

The 90% HDI for  is from 79.6 to 256.7.  The probability that it is less than 79.6 is 0.013, whereas the probability that it exceeds 256.7 is 0.087.  Notice that a Bayesian HDI differs quite markedly from the classical equal-tailed confidence interval.  The point is that the HDI is the shortest 90% interval.  Giving equal probabilities to the two tails yields the interval (93.5, 287.8), which is 10% wider.  (Try 5 and then 95 in the percentile box).

11  This requires an analysis with three samples.  The posterior means of  1HS   RWand  W  are 23.114, 22.14 and 21.12, not differing very greatly.  Selecting distributions of the differences, and in each case asking whether it could be negative, gives  P(HS  RW < 0 | data) = 0.0044,  P(RW  W < 0 | data) = 0.0028  and  P(HS  W < 0 | data) = 0.   (The last is too small for First Bayes to measure accurately).  The evidence for different means is already conclusive.  The Bayesian test of equality also gives a probability of zero.

12  Opening a simple regression analysis box, and entering GEYSERX as the Y variable and GEYSERY as the X variable (not the other way round!), the posterior distribution of  is t with 98 degrees of freedom, a mean of 0.048 and a variance of 0.000046.  It looks very like a normal distribution of course.  The posterior probability that  is negative is shown as zero (too small for First Bayes to measure accurately).  So the evidence for a relationship is conclusive.  The longer the wait, presumably, the more pent-up steam the geyser has and therefore the longer it erupts.

Predicting a future observation at 96 minutes gives a predictive distribution that is t, again with 98 degrees of freedom, mean 4.83 and variance 0.76.  Its 99% HDI is (2.565, 7.089), so there is substantial uncertainty in prediction at this length of time between eruptions.

The distribution of    + 96   (linear function with weights 1 and 96) is t, again with 98 degrees of freedom, mean 4.83 and variance 0.045.  There is of course much less uncertainty about this than about a single future observation after a 96 minute wait.  The 99% HDI is (4.276, 5.379).  Putting both fitted-line and prediction bounds on the scatter plot demonstrates the difference over the whole range of time intervals.

13  Just plotting the residuals from this regression shows substantial heteroscedasticity.  As might be guessed, the observer's estimation error increases with the size of the flock.

Regressing the logarithms of Observers 1's count on the log of the true count gives more satisfactory scatter and residual plots.  (It would have been more convincing to use the whole dataset of course.  See section 5.8 for how you could do this.)  A slope of  = 1  would indicate accurate estimation by Observer 1.  The distribution of covers zero comfortably, and gives  P( > 0 | data) = 0.32.  The distribution of  is even more closely centred on  = 1, with  P( > 1 | data) = 0.52.  On this basis, there is no evidence in the data to suggest any systematic bias on the part of Observer 1.  On the other hand, the mean of 2 is 0.082, so on the log scale a single observation is estimated to have a standard deviation of about 0.9, which translates into a typical multiplicative error of  exp(0.9) = 2.46  on the original scale.  So Observer 1 might easily over- or under-estimate by a factor of about 2.5.  Observer 1's estimates are therefore rather erratic.  (A proper Bayesian analysis would consider predictive distributions on the original scale, but this feature is not available in First Bayes.)

14  (a)  The posterior mean of  is 3.462.  Entering  100  3.75  in the Probabilities field gives a probability of 0.997.  So  is almost certainly less than 3 minutes and 45 seconds.

(b)  Selecting instead the marginal distribution of 2, and typing 95 in the HDI field gives a 95% interval from 0.78 to 1.37.

(c)  Predicting successively 1, 3, 10 and 100 observations gives the probabilities 0.610, 0.684, 0.801 and 0.975 for the mean being below 3 minutes and 45 seconds.  This makes obvious sense.  One observation is much more variable than the mean of 3 or 10.  By the time we have the mean of 100 observations we are very close to asking about  itself, so the answer of 0.975 is close to the value 0.997 in (a).

15  Just using the first 10 data gives much weaker posterior information.

(a)  The posterior mean is 3.482, which is close to the value found before, but the probability of being less than 3.75 is now only 0.756.  This is due to the increased posterior variance for .

(b)  The 95% HDI for 2 is also much wider, 0.47 to 3.75.

(c)  Probabilities are now 0.584, 0.632, 0.690 and 0.746.  (Again, note that the last is close to the answer in (a).

